A081041
6th binomial transform of (1,5,0,0,0,0,0,0,...).
Original entry on oeis.org
1, 11, 96, 756, 5616, 40176, 279936, 1912896, 12877056, 85660416, 564350976, 3688436736, 23944605696, 154551545856, 992612745216, 6347497291776, 40435908673536, 256721001578496, 1624959306694656, 10257555623510016
Offset: 0
-
[(5*n+6)*6^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
-
CoefficientList[Series[(1 - x)/(1 - 6 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{12,-36},{1,11},20] (* Harvey P. Dale, Mar 04 2019 *)
A081043
8th binomial transform of (1,7,0,0,0,0,0,...).
Original entry on oeis.org
1, 15, 176, 1856, 18432, 176128, 1638400, 14942208, 134217728, 1191182336, 10468982784, 91268055040, 790273982464, 6803228196864, 58274116272128, 496979255754752, 4222124650659840, 35747322042253312, 301741175033823232
Offset: 0
-
I:=[1, 15]; [n le 2 select I[n] else 16*Self(n-1)-64*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 23 2012
-
LinearRecurrence[{16,-64},{1,15},20] (* or *) Table[(7n+8)8^(n-1),{n,0,20}] (* Harvey P. Dale, Feb 22 2012 *)
A380747
Array read by ascending antidiagonals: A(n,k) = [x^n] (1 - x)/(1 - k*x)^2.
Original entry on oeis.org
1, -1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 5, 1, 0, 1, 20, 21, 7, 1, 0, 1, 48, 81, 40, 9, 1, 0, 1, 112, 297, 208, 65, 11, 1, 0, 1, 256, 1053, 1024, 425, 96, 13, 1, 0, 1, 576, 3645, 4864, 2625, 756, 133, 15, 1, 0, 1, 1280, 12393, 22528, 15625, 5616, 1225, 176, 17, 1
Offset: 0
The array begins as:
1, 1, 1, 1, 1, 1, ...
-1, 1, 3, 5, 7, 9, ...
0, 1, 8, 21, 40, 65, ...
0, 1, 20, 81, 208, 425, ...
0, 1, 48, 297, 1024, 2625, ...
0, 1, 112, 1053, 4864, 15625, ...
0, 1, 256, 3645, 22528, 90625, ...
...
Cf.
A000012 (k=1 or n=0),
A000567 (n=2),
A001792 (k=2),
A007778,
A060747 (n=1),
A081038 (k=3),
A081039 (k=4),
A081040 (k=5),
A081041 (k=6),
A081042 (k=7),
A081043 (k=8),
A081044 (k=9),
A081045 (k=10),
A103532,
A154955,
A380748 (antidiagonal sums).
-
A[0,0]:=1; A[1,0]:=-1; A[n_,k_]:=((k-1)*n+k)k^(n-1); Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=SeriesCoefficient[(1-x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+(k-1)*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
Showing 1-3 of 3 results.