A081045 10th binomial transform of (1,9,0,0,0,0,0,...).
1, 19, 280, 3700, 46000, 550000, 6400000, 73000000, 820000000, 9100000000, 100000000000, 1090000000000, 11800000000000, 127000000000000, 1360000000000000, 14500000000000000, 154000000000000000, 1630000000000000000, 17200000000000000000, 181000000000000000000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (20,-100).
Programs
-
Magma
[(9*n+10)*10^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
-
Mathematica
CoefficientList[Series[(1 - x)/(1 - 10 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *) LinearRecurrence[{20,-100},{1,19},20] (* Harvey P. Dale, Dec 28 2023 *)
Formula
a(n) = 20*a(n-1) - 100*a(n-2); a(0)=1, a(1)=19.
a(0)=1; for n>= 1, a(n) = (9*n+10)*10^(n-1) = 10^(n-1)*A017173(n+1).
a(n) = Sum_{k=0..n} (k+1)*9^k*binomial(n, k).
G.f.: (1-x)/(1-10*x)^2.
E.g.f.: exp(10*x)*(1 + 9*x). - Stefano Spezia, Jan 31 2025
Comments