cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A140862 Incorrect duplicate of A081083.

Original entry on oeis.org

1, 2, 5, 6, 2, 8, 10, 13, 14, 22, 30, 33, 37, 41, 42, 46, 48, 57, 58, 61, 65, 66, 69, 70, 73, 78
Offset: 1

Views

Author

Giovanni Teofilatto, Jul 19 2008

Keywords

A081084 Nonsquarefree numbers m such that rad(m+1)=rad(m)+1, where rad(m)=A007947(m) is the squarefree kernel of m.

Original entry on oeis.org

8, 48, 224, 960, 65024, 261120, 1046528, 4190208, 268402688, 1073676288, 4294836224, 17179607040, 70368727400448, 4503599493152768, 18014398241046528, 72057593501057024, 288230375077969920
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 04 2003

Keywords

Comments

For k >= 3, 2^k*(2^(k-2)-1) is in the sequence if and only if 2^(k-1)-1 and 2^(k-2)-1 are squarefree. So if m is a term, m+1=2^(k-1)-1 is a squarefree number squared. - Lambert Herrgesell (zero815(AT)googlemail.com), Feb 18 2007

Examples

			48 = 2^4*3 is in the sequence because it is not squarefree, its squarefree kernel is 6 and the squarefree kernel of 49 = 7^2 is 7.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 48, p. 18, Ellipses, Paris 2008.

Crossrefs

Programs

  • Maple
    with(numtheory): rad:=proc(n) local fs, c: fs:=convert(factorset(n),list): c:=nops(fs): product(fs[j],j=1..c) end: b:=proc(n) if mobius(n)=0 and rad(n+1)=rad(n)+1 then n else fi end:seq(b(n),n=1..1000); # Emeric Deutsch
  • PARI
    rad(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])
    is(n)=!issquarefree(n) && rad(n+1)==rad(n)+1 \\ Charles R Greathouse IV, Aug 08 2013

Extensions

a(5)-a(8) from Emeric Deutsch, Mar 29 2005
Edited and a(9) onwards supplied by Lambert Herrgesell (zero815(AT)googlemail.com), Feb 18 2007

A141408 Primes p = A007947(m) such that p+6 is also prime and p + 1 = A007947(m + 1).

Original entry on oeis.org

5, 13, 37, 41, 61, 73, 101, 157, 173, 193, 257, 277, 353, 373, 433, 457, 461, 541, 601, 613, 641, 653, 677, 733, 821, 853, 857, 877, 941, 977, 1033, 1117, 1181, 1217, 1297, 1301, 1321, 1361, 1433, 1453, 1481, 1553, 1613, 1621, 1657, 1741, 1753, 1777, 1873, 1901, 1973, 1993
Offset: 1

Views

Author

Giovanni Teofilatto, Aug 04 2008

Keywords

Comments

a(n)==1 (mod 4).

Crossrefs

Programs

  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    lista(nn) = {for (n=1, nn, my(p=rad(n)); if (isprime(p) && isprime(p+6) && (p+1==rad(n+1)), print1(p, ", ")););} \\ Michel Marcus, Aug 22 2019

Extensions

Definition clarified, more terms appended by R. J. Mathar, Aug 23 2010
A-number typo in definition corrected by R. J. Mathar, Aug 30 2010
More terms from Michel Marcus, Aug 22 2019

A075655 Numbers n such that n + product of prime factors of n = (n+1) + product of prime factors of (n+1).

Original entry on oeis.org

3, 24, 1088, 4224, 16640, 66048, 16785408, 67125248, 268468224
Offset: 1

Views

Author

Joseph L. Pe, Oct 12 2002

Keywords

Comments

Numbers n such that A073353(n) = A073353(n+1). - Michel Marcus, Aug 23 2019
No more terms below 10^10. - Amiram Eldar, Aug 23 2019

Examples

			24 + product of prime factors of 24 = 24 + 2 * 3 = 30; 25 + product of prime factors of 25 = 25 + 5 = 30; hence 24 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := n + Apply[Times, Transpose[FactorInteger[n]][[1]]]; Select[Range[2, 10^5], s[ # ] == s[ # + 1] &]
    Flatten[Position[Partition[Table[n+Times@@Transpose[FactorInteger[ n]] [[1]],{n,2,100000}],2,1],?(#[[1]]==#[[2]]&),{1},Heads->False]]+1 (* _Harvey P. Dale, Apr 20 2014 *)
    rad[n_] := Times @@ First /@ FactorInteger[n]; r1 = 1; s = {}; Do[r2 = rad[n]; If[r1 - r2 == 1, AppendTo[s, n-1]]; r1 = r2, {n, 2, 10^5}]; s (* Amiram Eldar, Aug 23 2019 *)

Extensions

a(7)-a(9) from Amiram Eldar, Aug 23 2019
Showing 1-4 of 4 results.