A081092 Primes having a prime number of 1's in their binary representation.
3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 47, 59, 61, 67, 73, 79, 97, 103, 107, 109, 127, 131, 137, 151, 157, 167, 173, 179, 181, 191, 193, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 271, 283, 307, 313, 331, 367, 379, 397, 409, 419, 421, 431, 433, 439, 443
Offset: 1
Examples
15th prime = 47 = '101111' with five 1's, therefore 47 is in the sequence.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- G. Harman, Counting Primes whose Sum of Digits is Prime, J. Integer Seq., 15 (2012), Article 12.2.2.
Programs
-
Haskell
a081092 n = a081092_list !! (n-1) a081092_list = filter ((== 1) . a010051') a052294_list -- Reinhard Zumkeller, Nov 16 2012
-
Maple
q:= n-> isprime(n) and isprime(add(i,i=Bits[Split](n))): select(q, [$1..500])[]; # Alois P. Heinz, Sep 28 2023
-
Mathematica
Clear[BinSumOddQ];BinSumPrimeQ[a_]:=Module[{i,s=0},s=0;For[i=1,i<=Length[IntegerDigits[a,2]],s+=Extract[IntegerDigits[a,2],i];i++ ];PrimeQ[s]]; lst={};Do[p=Prime[n];If[BinSumPrimeQ[p],AppendTo[lst,p]],{n,4!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 06 2009 *) Select[Prime[Range[100]], PrimeQ[Apply[Plus, IntegerDigits[#, 2]]] &] (* Jonathan Sondow, Jun 09 2012 *)
-
PARI
lista(nn) = {forprime(p=2, nn, if (isprime(hammingweight(p)), print1(p, ", ")););} \\ Michel Marcus, Jan 16 2015
-
Python
from sympy import isprime def ok(n): return isprime(n.bit_count()) and isprime(n) print([k for k in range(444) if ok(k)]) # Michael S. Branicky, Dec 27 2023
Comments