cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A055814 Expansion of e.g.f.: exp(x^3/3 + x^2/2).

Original entry on oeis.org

1, 0, 1, 2, 3, 20, 55, 210, 1225, 4760, 26145, 157850, 811195, 5345340, 35170135, 222472250, 1650073425, 12000388400, 88563700225, 720929459250, 5786843137075, 48072795270500, 424314078763575, 3731123025279650, 34084058218435225, 323768324084205000
Offset: 0

Views

Author

Karol A. Penson, Mar 05 2003

Keywords

Comments

a(n) is the number of n-permutations in which all cycles have length two or three. - Geoffrey Critzer, Feb 21 2010

Examples

			a(4) = 3 because there are 3 permutations of {1,2,3,4} that have cycle length two or three: (1,2)(3,4);(1,3)(2,4);(1,4)(2,3). - _Geoffrey Critzer_, Feb 21 2010
		

References

  • Miklos Bona, A Walk Through Combinatorics, World Scientific Publishing Co., 2002, page 169. - Geoffrey Critzer, Feb 21 2010

Crossrefs

Cf. A081096.
Cf. A000085, A001470. - Joerg Arndt, Oct 02 2009

Programs

  • GAP
    a:=[1,0,1];; for n in [4..30] do a[n]:=(n-2)*(a[n-2]+(n-3)*a[n-3]); od; a; # G. C. Greubel, Jan 23 2020
  • Magma
    I:=[1,0,1]; [n le 3 select I[n] else (n-2)*(Self(n-2) +(n-3)*Self(n-3)): n in [1..30]]; // G. C. Greubel, Jan 23 2020
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*(j-1)!, j=2..min(3, n)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 25 2018
  • Mathematica
    With[{m=30}, CoefficientList[Series[Exp[x^2/2 + x^3/3], {x,0,m}], x]*Range[0, m]!] (* Geoffrey Critzer, Feb 21 2010 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x^3/3 + x^2/2) )) \\ G. C. Greubel, Jan 23 2020
    
  • Sage
    [factorial(n)*( exp(x^3/3 + x^2/2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jan 23 2020
    

Formula

a(n) = subs(x=0, (d^n/dx^n)exp(x^3/3 + x^2/2)), n=0, 1, 2, ...
a(n) = (n-1)*a(n-2) + (n-1)*(n-2)*a(n-3). - Joerg Arndt, Oct 02 2009
a(n) ~ n^(2*n/3)*exp(1/18 - 2*n/3 - n^(1/3)/6 + n^(2/3)/2)/sqrt(3) * (1 + 49/(324*n^(1/3)) - 72451/(1049760*n^(2/3))). - Vaclav Kotesovec, Jun 26 2013

Extensions

Improved definition, as proposed by Joerg Arndt, from R. J. Mathar, Oct 23 2009
a(0)=1 prepended by Alois P. Heinz, Jan 25 2018
Showing 1-1 of 1 results.