cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081115 (p^2 - 1)/12 where p > 3 runs through the primes.

Original entry on oeis.org

2, 4, 10, 14, 24, 30, 44, 70, 80, 114, 140, 154, 184, 234, 290, 310, 374, 420, 444, 520, 574, 660, 784, 850, 884, 954, 990, 1064, 1344, 1430, 1564, 1610, 1850, 1900, 2054, 2214, 2324, 2494, 2670, 2730, 3040, 3104, 3234, 3300, 3710, 4144, 4294, 4370, 4524
Offset: 3

Views

Author

Benoit Cloitre, Apr 16 2003

Keywords

Comments

If p=4k+1, (p^2 - 1)/12 = Sum_{i=1..k} floor(sqrt(i*k)) (see links). - R. J. Mathar, Jul 07 2006
For n=1 and 2, the corresponding primes being 2 and 3, and a(n) is a fraction, not entered here. - Michel Marcus, Nov 11 2013
For prime p > 3, (p^2 - 1)/12 = (1/p)*Sum_{k=0..floor(p/2)} (p - k)*k. - Joseph Wheat, Feb 03 2018

Programs

  • GAP
    List(Filtered([5..20], IsPrime), p->(p^2-1)/12); # Muniru A Asiru, Feb 04 2018
  • Maple
    seq((ithprime(p)^2-1)/12, p=3..20); # Muniru A Asiru, Feb 04 2018
  • Mathematica
    (Prime[Range[3, 51]]^2 - 1)/12 (* Giovanni Resta, May 25 2013 *)
  • PARI
    a(n) = p = prime(n); (p^2-1)/12; \\ Michel Marcus, Nov 11 2013
    

Formula

a(n) = j*(j+1)/3 where A000040(n)=2*j+1. - R. J. Mathar, Jul 07 2006
a(n) = (A001248(n) - 1)/12. - Vicente Izquierdo Gomez, May 25 2013
a(n) = 2*A024702(n). - R. J. Mathar, Jan 09 2017
a(n) = (prime(n)^2 - 1)/12 for n >= 3. - Jon E. Schoenfield, Dec 25 2019

Extensions

Offset set to 3 and edited by Michel Marcus, Nov 11 2013