A081115 (p^2 - 1)/12 where p > 3 runs through the primes.
2, 4, 10, 14, 24, 30, 44, 70, 80, 114, 140, 154, 184, 234, 290, 310, 374, 420, 444, 520, 574, 660, 784, 850, 884, 954, 990, 1064, 1344, 1430, 1564, 1610, 1850, 1900, 2054, 2214, 2324, 2494, 2670, 2730, 3040, 3104, 3234, 3300, 3710, 4144, 4294, 4370, 4524
Offset: 3
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 3..5000
- Hojoo Lee, Problems in Elementary Number Theory, p. 14, problem 10.
- George Pólya and Gabor Szego, Problems and Theorems in Analysis II, p. 113, problem 20.
- S. A. Shirali, A family portrait of primes -- a case study in discrimination, Math. Mag.. Vol. 70, No. 4 (Oct. 1997), pp. 263-272.
Programs
-
GAP
List(Filtered([5..20], IsPrime), p->(p^2-1)/12); # Muniru A Asiru, Feb 04 2018
-
Maple
seq((ithprime(p)^2-1)/12, p=3..20); # Muniru A Asiru, Feb 04 2018
-
Mathematica
(Prime[Range[3, 51]]^2 - 1)/12 (* Giovanni Resta, May 25 2013 *)
-
PARI
a(n) = p = prime(n); (p^2-1)/12; \\ Michel Marcus, Nov 11 2013
Formula
a(n) = j*(j+1)/3 where A000040(n)=2*j+1. - R. J. Mathar, Jul 07 2006
a(n) = (A001248(n) - 1)/12. - Vicente Izquierdo Gomez, May 25 2013
a(n) = 2*A024702(n). - R. J. Mathar, Jan 09 2017
a(n) = (prime(n)^2 - 1)/12 for n >= 3. - Jon E. Schoenfield, Dec 25 2019
Extensions
Offset set to 3 and edited by Michel Marcus, Nov 11 2013
Comments