A081120 Number of integral solutions to Mordell's equation y^2 = x^3 - n.
1, 2, 0, 4, 0, 0, 4, 1, 0, 0, 4, 0, 2, 0, 2, 0, 0, 2, 2, 2, 0, 0, 2, 0, 2, 4, 1, 6, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 2, 0, 0, 0, 2, 2, 0, 6, 4, 2, 0, 0, 0, 4, 2, 4, 2, 0, 0, 0, 4, 2, 0, 4, 1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 4, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 6
Offset: 1
Examples
a(4)=4 refers to (x,y) = (2,+-2) and (5,+-11).
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..10000 [There were errors in the previous b-file, which had 10000 terms contributed by T. D. Noe and based on the work of J. Gebel.]
- M. A. Bennett and A. Ghadermarzi, Mordell's equation: a classical approach. LMS J. Compute. Math. 18 (2015): 633-646. doi:10.1112/S1461157015000182 arXiv:1311.7077
- J. Gebel, A. Pethö, and H. G. Zimmer, On Mordell's equation, Compositio Mathematica. 110:3 (1998): 335-367.
- J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
- Joseph H. Silverman, The Arithmetic of Elliptic Curves.
- Eric Weisstein's World of Mathematics, Mordell Curve.
- Wikipedia, Mordell curve.
Programs
-
Mathematica
(* This naive approach gives correct results up to n=1000 *) xmax[] = 10^4; Do[ xmax[n] = 10^5, {n, {366, 775, 999}}]; Do[ xmax[n] = 10^6, {n, {207, 307, 847}}]; f[n] := (x = Floor[n^(1/3)] - 1; s = {}; While[ x <= xmax[n], x++; y2 = x^3 - n; If[y2 >= 0, y = Sqrt[y2]; If[ IntegerQ[y], AppendTo[s, y]]]]; s); a[n_] := (fn = f[n]; If[fn == {}, 0, 2 Length[fn] - If[ First[fn] == 0, 1, 0]]); Table[ an = a[n]; Print["a[", n, "] = ", an]; an, {n, 1, 100}] (* Jean-François Alcover, Mar 06 2012 *)
Extensions
Edited by Max Alekseyev, Feb 06 2021
Comments