cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A356702 Records values in A081120.

Original entry on oeis.org

1, 2, 4, 6, 8, 14, 18, 20, 22
Offset: 1

Views

Author

Jianing Song, Aug 23 2022

Keywords

Examples

			a(9) = 22 since A356700(9) = 3807, and the equation y^2 = x^3 - 3807 has 22 integral solutions.
		

Crossrefs

A081119 Number of integral solutions to Mordell's equation y^2 = x^3 + n.

Original entry on oeis.org

5, 2, 2, 2, 2, 0, 0, 7, 10, 2, 0, 4, 0, 0, 4, 2, 16, 2, 2, 0, 0, 2, 0, 8, 2, 2, 1, 4, 0, 2, 2, 0, 2, 0, 2, 8, 6, 2, 0, 2, 2, 0, 2, 4, 0, 0, 0, 2, 2, 2, 0, 2, 0, 2, 2, 2, 6, 0, 0, 0, 0, 0, 4, 5, 8, 0, 0, 4, 0, 0, 2, 2, 12, 0, 0, 2, 0, 0, 2, 8, 2, 2, 0, 0, 0, 0, 0, 0, 8, 0, 2, 2, 0, 2, 0, 0, 2, 2, 2, 12
Offset: 1

Views

Author

T. D. Noe, Mar 06 2003

Keywords

Comments

Mordell's equation has a finite number of integral solutions for all nonzero n.
Gebel, Petho, and Zimmer (1998) computed the solutions for |n| <= 10^4. Bennett and Ghadermarzi (2015) extended this bound to |n| <= 10^7.
Sequence A054504 gives n for which there are no integral solutions. See A081120 for the number of integral solutions to y^2 = x^3 - n.
a(n) is odd iff n is a cube. - Bernard Schott, Nov 23 2019
From Jianing Song, Aug 24 2022: (Start)
a(n) = 5 if n is a sixth power. Further more, if A060950(n) = 0 (namely the elliptic curve y^2 = x^3 + n has rank 0), then:
- a(n) = 2 if n is a square but not a sixth power;
- a(n) = 1 if n is a cube but not a sixth power;
- a(n) = 0 otherwise.
This follows from the complete description of the torsion group of y^2 = x^3 + n, using O to denote the point at infinity (see Exercise 10.19 of Chapter X of Silverman's Arithmetic of elliptic curves):
- If n = t^6 is a sixth power, then the torsion group consists of O, (2*t^2,+-3*t^3), (0,+-t^3), and (-t^2, 0).
- If n = t^2 is not a sixth power, then the torsion group consists of O and (0,+-t).
- If n = t^3 is not a sixth power, then the torsion group consists of O and (-t,0).
- If n is of the form -432*t^6, then the torsion group consists of O and (12*t^2,+-36*t^3).
- In all the other cases, the torsion group is trivial.
So a torsion point on y^2 = x^3 + n other than O is an integral point. If y^2 = x^3 + n has rank 0, then all the integral points on y^2 = x^3 + n are exactly the torsion points other than O.
Note that this result implies particularly that a(n) = a(n*t^6) for all t if A060950(n) = 0: the elliptic curve y^2 = x^3 + n*t^6 can be written as (y/t^3)^2 = (x/t^2)^3 + n, so it has the same Mordell-Weil group (hence the same rank and isomorphic torsion group) as y^2 = x^3 + n. (End)

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191.
  • J. Gebel, A. Petho and H. G. Zimmer, On Mordell's equation, Compositio Mathematica 110 (3) (1998), 335-367.

Crossrefs

Cf. A054504, A081120. See A134108 for another version.

Programs

Extensions

Edited by Max Alekseyev, Feb 06 2021

A081121 Numbers k such that Mordell's equation y^2 = x^3 - k has no integral solutions.

Original entry on oeis.org

3, 5, 6, 9, 10, 12, 14, 16, 17, 21, 22, 24, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 42, 43, 46, 50, 51, 52, 57, 58, 59, 62, 65, 66, 68, 69, 70, 73, 75, 77, 78, 80, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99
Offset: 1

Views

Author

T. D. Noe, Mar 06 2003

Keywords

Comments

Mordell's equation has a finite number of integral solutions for all nonzero k. Gebel computes the solutions for k < 10^5. Sequence A054504 gives k for which there are no integral solutions to y^2 = x^3 + k. See A081120 for the number of integral solutions to y^2 = x^3 - n.
This is the complement of A106265. - M. F. Hasler, Oct 05 2013
Numbers k such that A081120(k) = 0. - Charles R Greathouse IV, Apr 29 2015

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191.

Crossrefs

Programs

  • Mathematica
    m = 99; f[_List] := (xm = 2 xm; ym = Ceiling[xm^(3/2)];
    Complement[Range[m], Outer[Plus, -Range[0, ym]^2, Range[-xm, xm]^3] //Flatten //Union]); xm=10; FixedPoint[f, {}] (* Jean-François Alcover, Apr 29 2011 *)

A179163 Numbers k such that Mordell's equation y^2 = x^3 - k has exactly 1 integral solution.

Original entry on oeis.org

1, 8, 27, 64, 125, 512, 729, 1000, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 15625, 19683, 24389, 27000, 32768, 35937, 39304, 42875, 46656, 50653, 59319, 64000, 68921, 79507, 91125, 97336, 110592, 117649, 125000, 132651
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Comments

Contains all sixth powers: suppose that y^2 = x^3 - t^6, then (y/t^3)^2 = (x/t^2)^3 - 1. The elliptic curve Y^2 = X^3 - 1 has rank 0 and the only rational points on it are (1,0), so y^2 = x^3 - t^6 has only one solution (t^2,0). - Jianing Song, Aug 24 2022

Crossrefs

Complement of A179149 among the positive cubes.
Cf. also A179145, A356703.

Programs

  • Mathematica
    (* Assuming every term is a cube *) xmax = 2000; r[n_] := Reap[Do[rpos = Reduce[y^2 == x^3 - n, y, Integers]; If[rpos =!= False, Sow[rpos]]; rneg = Reduce[y^2 == (-x)^3 - n, y, Integers]; If[rneg =!= False, Sow[rneg]], {x, 1, xmax}]]; ok[1] = True; ok[n_] := Which[rn = r[n]; rn[[2]] === {}, False, Length[rn[[2]]] > 1, False, ! FreeQ[rn[[2, 1]], Or], False, True, True]; ok[n_ /; !IntegerQ[n^(1/3)]] = False; A179163 = Reap[Do[If[ok[n], Print[n]; Sow[n]], {n, 1, 140000}]][[2, 1]] (* Jean-François Alcover, Apr 12 2012 *)

Formula

a(n) = A356713(n)^3. - Jianing Song, Aug 24 2022

Extensions

Edited and extended by Ray Chandler, Jul 11 2010

A179175 a(n) = least positive k such that Mordell's equation y^2 = x^3 - k has exactly n integral solutions.

Original entry on oeis.org

3, 1, 2, 1331, 4, 216, 28, 54872, 116, 343, 828, 250047, 496, 71991296, 207
Offset: 0

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Comments

The status of further terms is:
15 integral solutions: unknown
16 integral solutions: 503
17 integral solutions: unknown
18 integral solutions: 431
19 integral solutions: unknown
20 integral solutions: 2351
21 integral solutions: unknown
22 integral solutions: 3807
For least positive k such that equation y^2 = x^3 + k has exactly n integral solutions, see A179162.
If n is odd, then a(n) is perfect cube. [Ray Chandler]
From Jose Aranda, Aug 04 2024: (Start)
About those unknown terms:
a(15) <= 2600^3 = (26* 10^2)^3
a(17) <= 10400^3 = (26* 20^2)^3
a(19) <= 93600^3 = (26* 60^2)^3
a(21) <= 4586400^3 = (26*420^2)^3
The term a(13) = 71991296 = 416^3 = (26*4^2)^3. (End)

Crossrefs

Extensions

Edited and a(7), a(11), a(13) added by Ray Chandler, Jul 11 2010

A060951 Rank of elliptic curve y^2 = x^3 - n.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2
Offset: 1

Views

Author

N. J. A. Sloane, May 10 2001

Keywords

Comments

The curves for n and -27*n are isogenous (as Noam Elkies points out--see Womack), so they have the same rank. - Jonathan Sondow, Sep 10 2013

Examples

			a(1) = A060950(27) = a(729) = 0. - _Jonathan Sondow_, Sep 10 2013
		

Crossrefs

Cf. A081120 (number of integral solutions to Mordell's equation y^2 = x^3 - n).

Programs

  • PARI
    {a(n) = if( n<1, 0, length( ellgenerators( ellinit( [ 0, 0, 0, 0, -n], 1))))} /* Michael Somos, Mar 17 2011 */
    
  • PARI
    apply( {A060951(n)=ellrank(ellinit([0,-n]))[1]}, [1..99]) \\ For version < 2.14, use ellanalyticrank(...). - M. F. Hasler, Jul 01 2024

Formula

a(n) = A060950(27*n) and A060950(n) = a(27*n), so a(n) = a(729*n). - Jonathan Sondow, Sep 10 2013

Extensions

Corrected Apr 08 2005 at the suggestion of James R. Buddenhagen. There were errors caused by the fact that Mishima lists each curve of rank two twice, once for each generator.

A106265 Numbers a > 0 such that the Diophantine equation a + b^2 = c^3 has integer solutions b and c.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 35, 39, 40, 44, 45, 47, 48, 49, 53, 54, 55, 56, 60, 61, 63, 64, 67, 71, 72, 74, 76, 79, 81, 83, 87, 89, 95, 100, 104, 106, 107, 109, 112, 116, 118, 121, 124, 125, 126, 127, 128, 135, 139, 143, 146, 147, 148, 150, 151, 152, 153
Offset: 1

Views

Author

Zak Seidov, Apr 28 2005

Keywords

Comments

A given a(n) can have multiple solutions with distinct (b,c), e.g., a=4 with b=2, c=2 (4 + 2^2 = 2^3) or with b=11, c=5 (4 + 11^2 = 5^3). (See also A181138.) Sequences A106266 and A106267 list the minimal values. - M. F. Hasler, Oct 04 2013
The cubes A000578 = (1, 8, 27, 64, ...) form a subsequence of this sequence, corresponding to b=0, a=c^3. If b=0 is excluded, these terms are not present, except for a few exceptions, a = 216, 343, 12167, ... (6^3 + 28^2 = 10^3, 7^3 + 13^2 = 8^3, 23^3 + 588^2 = 71^3, ...), cf. A038597 for the possible b-values. - M. F. Hasler, Oct 05 2013
This is the complement of A081121. The values do indeed correspond to solutions listed in Gebel's file. - M. F. Hasler, Oct 05 2013
B-file corrected following a remark by Alois P. Heinz, May 24 2019. A double-check would be appreciated in view of two values that were missing, for unknown reasons, in the earlier version of the b-file. - M. F. Hasler, Aug 10 2024

Examples

			a = 1,2,4,7,8,11,13,15,18,19,20,23,25,26,27,28,35,39,40,44,45,47,48,49,53, ...
b = 0,5,2,1,0, 4,70, 7, 3,18,14, 2,10, 1, 0, 6,36, 5,52, 9,96,13,4,524,26, ...
c = 1,3,2,2,2, 3,17, 4, 3, 7, 6, 3, 5, 3, 3, 4,11, 4,14, 5,21, 6, 4,65, 9, ...
Here are the values grouped together:
{{1, 0, 1}, {2, 5, 3}, {4, 2, 2}, {7, 1, 2}, {8, 0, 2}, {11, 4, 3}, {13, 70, 17}, {15, 7, 4}, {18, 3, 3}, {19, 18, 7}, {20, 14, 6}, {23, 2, 3}, {25, 10, 5}, {26, 1, 3}, {27, 0, 3}, {28, 6, 4}, {35, 36, 11}, {39, 5, 4}, {40, 52, 14}, {44, 9, 5}, {45, 96, 21}, {47, 13, 6}, {48, 4, 4}, {49, 524, 65}, {53, 26, 9}, {54, 17, 7}, {55, 3, 4}, {56, 76, 18}, {60, 2, 4}, {61, 8, 5}, {63, 1, 4}, {64, 0, 4}, {67, 110, 23}, {71, 21, 8}, ... }
a(2243) = 10000 = 25^3 - 75^2. - _M. F. Hasler_, Oct 05 2013, index corrected Aug 10 2024
a(136) = 366 = 11815^3 - 1284253^2 (has c/a(n) ~ 32.3); a(939) = 3607 = 244772^3 - 121099571^2 (has c/a(n) ~ 67.9); a(1090) = 4265 = 84521^3 - 24572364^2 (has c/a(n) ~ 19.8). - _M. F. Hasler_, Aug 10 2024
		

Crossrefs

Cf. A106266, A106267 for respective minimal values of b and c.
Cf. A023055: (Apparent) differences between adjacent perfect powers (integers of form a^b, a >= 1, b >= 2); A076438: n which appear to have a unique representation as the difference of two perfect powers; that is, there is only one solution to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1; A076440: n which appear to have a unique representation as the difference of two perfect powers and one of those powers is odd; that is, there is only one solution to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1 and that solution has odd x or odd y (or both odd); A075772: Difference between n-th perfect power and the closest perfect power, etc.

Programs

  • Mathematica
    f[n_] := Block[{k = Floor[n^(1/3) + 1]}, While[k < 10^6 && !IntegerQ[ Sqrt[k^3 - n]], k++ ]; If[k == 10^6, 0, k]]; Select[ Range[ 154], f[ # ] != 0 &] (* Robert G. Wilson v, Apr 28 2005 *)
  • PARI
    select( {is_A106265(a, L=99)=for(c=sqrtnint(a, 3), (a+9)*L, issquare(c^3-a, &b) && return(c))}, [1..199]) \\ The function is_A106265 returns 0 if n isn't a term, or else the c-value (A106267) which can't be zero if n is a term. The L-value can be used to increase the search limit but so far no instance is known that requires L>68. - M. F. Hasler, Aug 10 2024

Formula

a(n) = A106267(n)^3 - A106266(n)^2.

Extensions

More terms from Robert G. Wilson v, Apr 28 2005
Definition corrected, solutions with b=0 added by M. F. Hasler, Sep 30 2013

A134108 Number of integral solutions with nonnegative y to Mordell's equation y^2 = x^3 + n.

Original entry on oeis.org

3, 1, 1, 1, 1, 0, 0, 4, 5, 1, 0, 2, 0, 0, 2, 1, 8, 1, 1, 0, 0, 1, 0, 4, 1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 4, 3, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 3, 0, 0, 0, 0, 0, 2, 3, 4, 0, 0, 2, 0, 0, 1, 1, 6, 0, 0, 1, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 4, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 6, 2, 0, 0, 0, 1
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007, Oct 14 2007

Keywords

Comments

a(n) = A081119(n)/2 if A081119(n) is even, (A081119(n)+1)/2 if A081119(n) is odd (i.e. if n is a cubic number).
Comment from T. D. Noe, Oct 12 2007: In sequences A134108 (this entry) and A134109 dealing with the equation y^2 = x^3 + n, one could note that these are Mordell equations. Here are some related sequences: A054504, A081119, A081120, A081121. The link "Integer points on Mordell curves" has data on 20000 values of n. A134108 and A134109 count only solutions with y >= 0 and can be derived from A081119 and A081120.

Examples

			y^2 = x^3 + 1 has solutions (y, x) = (0, -1), (1, 0) and (3, 2), hence a(1) = 3.
y^2 = x^3 + 6 has no solutions, hence a(6) = 0.
y^2 = x^3 + 17 has 8 solutions (see A029727, A029728), hence a(17) = 8.
y^2 = x^3 + 27 has solution (y, x) = (0, -3), hence a(27) = 1.
		

Crossrefs

Programs

A229618 Numbers that are the distance between a square and the next larger cube.

Original entry on oeis.org

1, 2, 4, 7, 11, 13, 15, 18, 19, 20, 25, 26, 28, 35, 39, 40, 44, 45, 47, 48, 49, 53, 54, 55, 56, 60, 61, 63, 67, 71, 72, 74, 76, 79, 81, 83, 87, 100, 104, 106, 107, 109, 112, 116, 118, 126, 127, 128, 135, 139, 143
Offset: 1

Views

Author

M. F. Hasler, Sep 26 2013

Keywords

Comments

This is the range of the sequence A181138 (= least k>0 such that n^2+k is a cube). Note that this is not the same as A087285 = range of A077116 = difference between a cube and the next smaller square: If n^2+k = y^3 is the smallest cube above n^2, then n^2 is not necessarily the largest square below y^3, e.g., 9+18 = 27 = 3^3 is the least cube above 9 = 3^2, but 25 = 5^2 is the largest square below 27. Therefore the number 18 is in this sequence, but not in A087285.
See A077116 and A181138 and A179386 for motivations.
Apart from the leading 1, this is a subsequence of A106265, which does not require the square to be the next smaller one: For example, 23 = 27 - 4 = 3^3 - 2^2 is in A106265 but not in this sequence. A165288 is a subsequence of this one, except for the initial term.

Examples

			a(1) = 1 = 1^3-0^2 (but this is the only solution to y^3-x^2 = 1).
a(2) = 2 = 27-25 (= 3^3-5^2), and this is the only solution to y^3-x^2 = 2.
The number 3 is not in the sequence since there are no x, y > 0 such that y^3-x^2 = 3.
a(3) = 4 = 8-4 (= 2^3-2^2) = 125-121 (= 5^3-11^2); these are the only two solutions to y^3-x^2 = 4, for all x>11, the minimal positive y^3-x^2 is 7.
		

Crossrefs

A356713 Numbers k such that Mordell's equation y^2 = x^3 - k^3 has exactly 1 integral solution.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 27, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88
Offset: 1

Views

Author

Jianing Song, Aug 23 2022

Keywords

Comments

Numbers k such that Mordell's equation y^2 = x^3 - k^3 has no solution other than the trivial solution (k,0).
Cube root of A179163.
Contains all squares: suppose that y^2 = x^3 - t^6, then (y/t^3)^2 = (x/t^2)^3 - 1. The elliptic curve Y^2 = X^3 - 1 has rank 0 and the only rational points on it are (1,0), so y^2 = x^3 - t^6 has only one solution (t^2,0).

Crossrefs

Cf. A081120, A179163, A356709, A356720. Complement of A228948.

Formula

1 is a term since the equation y^2 = x^3 - 1^3 has no solution other than (1,0).
Showing 1-10 of 30 results. Next