A081130 Square array of binomial transforms of (0,0,1,0,0,0,...), read by antidiagonals.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 6, 6, 0, 0, 0, 1, 9, 24, 10, 0, 0, 0, 1, 12, 54, 80, 15, 0, 0, 0, 1, 15, 96, 270, 240, 21, 0, 0, 0, 1, 18, 150, 640, 1215, 672, 28, 0, 0, 0, 1, 21, 216, 1250, 3840, 5103, 1792, 36, 0, 0, 0, 1, 24, 294, 2160, 9375, 21504, 20412, 4608, 45, 0
Offset: 0
Examples
The array begins as: 0, 0, 0, 0, 0, 0, ... 0, 0, 0, 0, 0, 0, ... 0, 1, 1, 1, 1, 1, ... A000012 0, 3, 6, 9, 12, 15, ... A008585 0, 6, 24, 54, 96, 150, ... A033581 0, 10, 80, 270, 640, 1250, ... A244729 The antidiagonal triangle begins as: 0; 0, 0; 0, 0, 0; 0, 0, 1, 0; 0, 0, 1, 3, 0; 0, 0, 1, 6, 6, 0; 0, 0, 1, 9, 24, 10, 0;
Links
- G. C. Greubel, Antidiadoganal rows n = 0..50, flattened
Crossrefs
Programs
-
Magma
[k eq n select 0 else (n-k)^(k-2)*Binomial(k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, May 14 2021
-
Mathematica
Table[If[k==n, 0, (n-k)^(k-2)*Binomial[k, 2]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 14 2021 *)
-
PARI
T(n, k)=if (k==0, 0, k^(n-2)*binomial(n, 2)); seq(nn) = for (n=0, nn, for (k=0, n, print1(T(k, n-k), ", ")); ); seq(12) \\ Michel Marcus, May 14 2021
-
Sage
flatten([[0 if (k==n) else (n-k)^(k-2)*binomial(k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 14 2021
Formula
T(n, k) = k^(n-2)*binomial(n, 2), with T(n, 0) = 0 (square array).
T(n, n) = A081131(n).
Rows have g.f. x^3/(1-k*x)^n.
From G. C. Greubel, May 14 2021: (Start)
T(k, n-k) = (n-k)^(k-2)*binomial(k,2) with T(n, n) = 0 (antidiagonal triangle).
Sum_{k=0..n} T(n, n-k) = A081197(n). (End)
Extensions
Term a(5) corrected by G. C. Greubel, May 14 2021
Comments