Original entry on oeis.org
0, 0, 0, 1, 4, 13, 44, 162, 643, 2724, 12259, 58423, 293902, 1555743, 8640526, 50222288, 304792741, 1927313470, 12673784445, 86517541197, 612134881624, 4482215342305, 33919417267456, 264951302794510, 2133720505175351
Offset: 0
-
[n lt 3 select 0 else (&+[j^(n-j-2)*Binomial(n-j,2): j in [1..n-2]]): n in [0..30]]; // G. C. Greubel, May 15 2021
-
A081197 := proc(n)
add(k^(n-k-2)*binomial(n-k,2), k=1..n-2) ;
end proc: # R. J. Mathar, Feb 13 2015
-
Table[Sum[k^(n-k-2)*Binomial[n-k, 2], {k,n-2}], {n,0,30}] (* G. C. Greubel, May 15 2021 *)
-
[sum( (n-k)^(k-2)*binomial(k,2) for k in (0..n-1) ) for n in (0..30)] # G. C. Greubel, May 15 2021
A081131
a(n) = n^(n-2) * binomial(n,2).
Original entry on oeis.org
0, 0, 1, 9, 96, 1250, 19440, 352947, 7340032, 172186884, 4500000000, 129687123005, 4086546038784, 139788510734886, 5159146026151936, 204350482177734375, 8646911284551352320, 389289535005334947848, 18580248257778920521728, 937146152681201173795569
Offset: 0
-
[n lt 2 select 0 else n^(n-2)*Binomial(n,2): n in [0..20]]; // G. C. Greubel, May 18 2021
-
Join[{0},Table[n^(n-2) Binomial[n, 2], {n, 1, 20}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
-
[0 if (n<2) else n^(n-2)*binomial(n,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A053507
a(n) = binomial(n-1,2)*n^(n-3).
Original entry on oeis.org
0, 0, 1, 12, 150, 2160, 36015, 688128, 14880348, 360000000, 9646149645, 283787919360, 9098660462034, 315866083233792, 11806916748046875, 472877960873902080, 20205339187128111480, 917543123840934346752, 44131536275846038655193
Offset: 1
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.
-
List([1..20], n-> Binomial(n-1,2)*n^(n-3)); # G. C. Greubel, May 15 2019
-
[Binomial(n-1,2)*n^(n-3):n in [1..20]]; // Vincenzo Librandi, Sep 22 2011
-
[Binomial(n-1,2)*n^(n-3): n in [1..20]]; // G. C. Greubel, May 15 2019
-
nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Rest[Range[0, nn]! CoefficientList[Series[t^3/3!, {x, 0, nn}], x]] (* Geoffrey Critzer, Jan 22 2012 *)
Table[Binomial[n-1,2]n^(n-3),{n,20}] (* Harvey P. Dale, Sep 24 2019 *)
-
vector(20, n, binomial(n-1,2)*n^(n-3)) \\ G. C. Greubel, Jan 18 2017
-
[binomial(n-1,2)*n^(n-3) for n in (1..20)] # G. C. Greubel, May 15 2019
A081132
a(n) = (n+1)^n*binomial(n+2,2).
Original entry on oeis.org
1, 6, 54, 640, 9375, 163296, 3294172, 75497472, 1937102445, 55000000000, 1711870023666, 57954652913664, 2120125746145771, 83340051191685120, 3503151123046875000, 156797324626531188736, 7445162356977030877593
Offset: 0
a(1) = 6 because there are four functions from {1,2} into {1,2}: (1*,1) (1*,2*) (2,1) (2,2*) and the fixed points (marked *) sum to 6.
-
[((n+1)^n*Binomial(n+2,2)): n in [0..20]]; // Vincenzo Librandi, Sep 21 2011
-
seq((n+1)^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
-
Table[n^n*(n+1)/2,{n,20}]
-
[(n+1)^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A081133
a(n) = n^n*binomial(n+2, 2).
Original entry on oeis.org
1, 3, 24, 270, 3840, 65625, 1306368, 29647548, 754974720, 21308126895, 660000000000, 22254310307658, 811365140791296, 31801886192186565, 1333440819066961920, 59553569091796875000, 2822351843277561397248
Offset: 0
-
[(n^n*Binomial(n+2,2)): n in [0..20]]; // Vincenzo Librandi, Sep 22 2011
-
seq(n^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
-
Join[{1},Table[n^n Binomial[n+2,2],{n,20}]] (* Harvey P. Dale, Dec 27 2011 *)
-
[n^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A081196
a(n) = (n+4)^n*binomial(n+2,2).
Original entry on oeis.org
1, 15, 216, 3430, 61440, 1240029, 28000000, 701538156, 19349176320, 583247465515, 19090807228416, 674680957031250, 25614222880669696, 1039980693455123385, 44977604109849722880, 2064633276062972568664
Offset: 0
-
[(n+4)^n*Binomial(n+2,2): n in [0..20]]; // Vincenzo Librandi, Aug 07 2013
-
seq((n+4)^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
-
Table[(n+4)^n Binomial[n+2, 2], {n, 0, 30}] (* Vincenzo Librandi, Aug 07 2013 *)
-
[(n+4)^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021
Showing 1-6 of 6 results.
Comments