A081131
a(n) = n^(n-2) * binomial(n,2).
Original entry on oeis.org
0, 0, 1, 9, 96, 1250, 19440, 352947, 7340032, 172186884, 4500000000, 129687123005, 4086546038784, 139788510734886, 5159146026151936, 204350482177734375, 8646911284551352320, 389289535005334947848, 18580248257778920521728, 937146152681201173795569
Offset: 0
-
[n lt 2 select 0 else n^(n-2)*Binomial(n,2): n in [0..20]]; // G. C. Greubel, May 18 2021
-
Join[{0},Table[n^(n-2) Binomial[n, 2], {n, 1, 20}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
-
[0 if (n<2) else n^(n-2)*binomial(n,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A053507
a(n) = binomial(n-1,2)*n^(n-3).
Original entry on oeis.org
0, 0, 1, 12, 150, 2160, 36015, 688128, 14880348, 360000000, 9646149645, 283787919360, 9098660462034, 315866083233792, 11806916748046875, 472877960873902080, 20205339187128111480, 917543123840934346752, 44131536275846038655193
Offset: 1
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.
-
List([1..20], n-> Binomial(n-1,2)*n^(n-3)); # G. C. Greubel, May 15 2019
-
[Binomial(n-1,2)*n^(n-3):n in [1..20]]; // Vincenzo Librandi, Sep 22 2011
-
[Binomial(n-1,2)*n^(n-3): n in [1..20]]; // G. C. Greubel, May 15 2019
-
nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Rest[Range[0, nn]! CoefficientList[Series[t^3/3!, {x, 0, nn}], x]] (* Geoffrey Critzer, Jan 22 2012 *)
Table[Binomial[n-1,2]n^(n-3),{n,20}] (* Harvey P. Dale, Sep 24 2019 *)
-
vector(20, n, binomial(n-1,2)*n^(n-3)) \\ G. C. Greubel, Jan 18 2017
-
[binomial(n-1,2)*n^(n-3) for n in (1..20)] # G. C. Greubel, May 15 2019
A055134
Triangle read by rows: T(n,k) = number of labeled endofunctions on n points with k fixed points.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 8, 12, 6, 1, 81, 108, 54, 12, 1, 1024, 1280, 640, 160, 20, 1, 15625, 18750, 9375, 2500, 375, 30, 1, 279936, 326592, 163296, 45360, 7560, 756, 42, 1, 5764801, 6588344, 3294172, 941192, 168070, 19208, 1372, 56, 1, 134217728
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
1, 2, 1;
8, 12, 6, 1;
81, 108, 54, 12, 1;
1024, 1280, 640, 160, 20, 1;
15625, 18750, 9375, 2500, 375, 30, 1;
279936, 326592, 163296, 45360, 7560, 756, 42, 1;
...
-
Clear[B] B[0] = {{x, y}, {t*y, x}}; B[n_] := B[n] = B[n - 1].B[0]; Table[Det[B[n]] /. x -> Sqrt[z] /. y -> 1 /. t -> n, {n, 0, 10}]; a = Join[{{1}}, Table[CoefficientList[Det[B[n]] /. x -> Sqrt[z] /. y ->1 /. t -> n, z], {n, 0, 10}]]; Flatten[a] (* Roger L. Bagula, Apr 09 2008 *)
row[n_] := CoefficientList[(x + n - 1)^n + O[x]^(n+1), x];
Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 13 2017, after Geoffrey Critzer *)
Join[{1, 0, 1}, Table[Binomial[n, k]*(n - 1)^(n - k), {n, 2, 49}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 14 2017 *)
-
for(n=0,15, for(k=0,n, print1(if(n==0 && k==0, 1, if(n==1 && k==0, 0, if(n==1 && k==1, 1, binomial(n,k)*(n-1)^(n-k)))), ", "))) \\ G. C. Greubel, Nov 14 2017
A081133
a(n) = n^n*binomial(n+2, 2).
Original entry on oeis.org
1, 3, 24, 270, 3840, 65625, 1306368, 29647548, 754974720, 21308126895, 660000000000, 22254310307658, 811365140791296, 31801886192186565, 1333440819066961920, 59553569091796875000, 2822351843277561397248
Offset: 0
-
[(n^n*Binomial(n+2,2)): n in [0..20]]; // Vincenzo Librandi, Sep 22 2011
-
seq(n^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
-
Join[{1},Table[n^n Binomial[n+2,2],{n,20}]] (* Harvey P. Dale, Dec 27 2011 *)
-
[n^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A081196
a(n) = (n+4)^n*binomial(n+2,2).
Original entry on oeis.org
1, 15, 216, 3430, 61440, 1240029, 28000000, 701538156, 19349176320, 583247465515, 19090807228416, 674680957031250, 25614222880669696, 1039980693455123385, 44977604109849722880, 2064633276062972568664
Offset: 0
-
[(n+4)^n*Binomial(n+2,2): n in [0..20]]; // Vincenzo Librandi, Aug 07 2013
-
seq((n+4)^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
-
Table[(n+4)^n Binomial[n+2, 2], {n, 0, 30}] (* Vincenzo Librandi, Aug 07 2013 *)
-
[(n+4)^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A232055
Triangular array read by rows: T(n,k) is the number of forests of rooted labeled trees such that the vertex labeled with 1 is in a component (rooted tree) of size k, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 1, 2, 3, 4, 9, 16, 18, 27, 64, 125, 128, 162, 256, 625, 1296, 1250, 1440, 1920, 3125, 7776, 16807, 15552, 16875, 20480, 28125, 46656, 117649, 262144, 235298, 244944, 280000, 350000, 489888, 823543, 2097152
Offset: 1
1;
1, 2;
3, 4, 9;
16, 18, 27, 64;
125, 128, 162, 256, 625;
1296, 1250, 1440, 1920, 3125, 7776;
- Miklos Bona, Introduction to Enumerative Combinatorics, McGraw Hill, 2007, page 282.
-
Table[Table[Binomial[n,k](k+1)(k+1)^(k-1)(n-k+1)^(n-k-1),{k,0,n}],{n,0,7}]//Grid
A353122
Numbers k such that k^k*(k+1) + 1 is prime.
Original entry on oeis.org
0, 1, 2, 3, 6, 9, 186, 198, 8390
Offset: 1
9 is in the sequence because 9^9*(9+1) + 1 = 3874204891, which is prime.
-
[n: n in [0..200] | IsPrime(n^n*(n+1) + 1)];
-
Join[{0}, Select[Range[200], PrimeQ[#^#*(# + 1) + 1] &]] (* Amiram Eldar, Apr 25 2022 *)
-
isok(k) = ispseudoprime(k^k*(k+1) + 1); \\ Michel Marcus, May 16 2022
Showing 1-7 of 7 results.
Comments