cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A081131 a(n) = n^(n-2) * binomial(n,2).

Original entry on oeis.org

0, 0, 1, 9, 96, 1250, 19440, 352947, 7340032, 172186884, 4500000000, 129687123005, 4086546038784, 139788510734886, 5159146026151936, 204350482177734375, 8646911284551352320, 389289535005334947848, 18580248257778920521728, 937146152681201173795569
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Main diagonal of A081130.
a(n) is the number of partial functions f: {1,2,...,n} -> {1,2,...,n} that have exactly 2 undefined elements. - Geoffrey Critzer, Feb 08 2012
a(n+1) is the determinant of the circulant matrix having (n-1, n-2, ..., 0) as first row, for n >= 1. See A070896 for a variant, and A303260 for a related sequence. - M. F. Hasler, Apr 23 2018
a(n) is the number of birooted labeled trees on n nodes. - Brendan McKay, May 01 2018

Crossrefs

Sequences of the form (n+m)^n*binomial(n+2,2): A081133 (m=0), A081132 (m=1), this sequence (m=2), A053507 (m=3), A081196 (m=4).

Programs

  • Magma
    [n lt 2 select 0 else n^(n-2)*Binomial(n,2): n in [0..20]]; // G. C. Greubel, May 18 2021
    
  • Mathematica
    Join[{0},Table[n^(n-2) Binomial[n, 2], {n, 1, 20}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
  • Sage
    [0 if (n<2) else n^(n-2)*binomial(n,2) for n in (0..20)] # G. C. Greubel, May 18 2021

Formula

a(0) = a(1) = 0, a(n) = n^(n-2)*binomial(n,2).
E.g.f.: T(x)^2/(2*(1-T(x))) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Feb 08 2012

A053507 a(n) = binomial(n-1,2)*n^(n-3).

Original entry on oeis.org

0, 0, 1, 12, 150, 2160, 36015, 688128, 14880348, 360000000, 9646149645, 283787919360, 9098660462034, 315866083233792, 11806916748046875, 472877960873902080, 20205339187128111480, 917543123840934346752, 44131536275846038655193
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

Number of connected unicyclic simple graphs on n labeled nodes such that the unique cycle has length 3. - Len Smiley, Nov 27 2001
Each simple graph (of this type) corresponds to exactly two 'functional digraphs' counted by A065513.

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.

Crossrefs

Equals 2*A065513. A diagonal of A081130.

Programs

  • GAP
    List([1..20], n-> Binomial(n-1,2)*n^(n-3)); # G. C. Greubel, May 15 2019
  • Magma
    [Binomial(n-1,2)*n^(n-3):n in [1..20]]; // Vincenzo Librandi, Sep 22 2011
    
  • Magma
    [Binomial(n-1,2)*n^(n-3): n in [1..20]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Rest[Range[0, nn]! CoefficientList[Series[t^3/3!, {x, 0, nn}], x]] (* Geoffrey Critzer, Jan 22 2012 *)
    Table[Binomial[n-1,2]n^(n-3),{n,20}] (* Harvey P. Dale, Sep 24 2019 *)
  • PARI
    vector(20, n, binomial(n-1,2)*n^(n-3)) \\ G. C. Greubel, Jan 18 2017
    
  • Sage
    [binomial(n-1,2)*n^(n-3) for n in (1..20)] # G. C. Greubel, May 15 2019
    

Formula

E.g.f.: -LambertW(-x)^3/3!. - Vladeta Jovovic, Apr 07 2001

A055134 Triangle read by rows: T(n,k) = number of labeled endofunctions on n points with k fixed points.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 8, 12, 6, 1, 81, 108, 54, 12, 1, 1024, 1280, 640, 160, 20, 1, 15625, 18750, 9375, 2500, 375, 30, 1, 279936, 326592, 163296, 45360, 7560, 756, 42, 1, 5764801, 6588344, 3294172, 941192, 168070, 19208, 1372, 56, 1, 134217728
Offset: 0

Views

Author

Christian G. Bower, Apr 25 2000

Keywords

Comments

The same triangle (except for signs) may be obtained from the determinants of the Brahmagupta matrices, setting x->Sqrt[z], y->1, t->n. - Roger L. Bagula, Apr 09 2008
From Bob Selcoe, Nov 15 2014 (Start):
T(n,k)/A000312(n) is the probability P(n,k) that any member (j) of set J={1..n} will be selected k times given n random draws from J. This is equivalent to rolling an n-sided die (with standard assumptions) with sides numbered j=1..n: P(n,k) is the probability that any j will show k times with n rolls.
P(n,k) = (n-2)!*(n-1)^(n-k+1 )/k!*(n-k)!*n^(n-1); n>1. As n approaches infinity, P(n,0) and P(n,1) approach 1/e. (End)
Row sums give n^n (see A000312). - Bob Selcoe, Sep 08 2015

Examples

			Triangle T(n,k) begins:
       1;
       0,      1;
       1,      2,      1;
       8,     12,      6,     1;
      81,    108,     54,    12,    1;
    1024,   1280,    640,   160,   20,   1;
   15625,  18750,   9375,  2500,  375,  30,  1;
  279936, 326592, 163296, 45360, 7560, 756, 42, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A065440, A055897, A081132(n-2) for n>=2.
Row sums give A000312.

Programs

  • Mathematica
    Clear[B] B[0] = {{x, y}, {t*y, x}}; B[n_] := B[n] = B[n - 1].B[0]; Table[Det[B[n]] /. x -> Sqrt[z] /. y -> 1 /. t -> n, {n, 0, 10}]; a = Join[{{1}}, Table[CoefficientList[Det[B[n]] /. x -> Sqrt[z] /. y ->1 /. t -> n, z], {n, 0, 10}]]; Flatten[a] (* Roger L. Bagula, Apr 09 2008 *)
    row[n_] := CoefficientList[(x + n - 1)^n + O[x]^(n+1), x];
    Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 13 2017, after Geoffrey Critzer *)
    Join[{1, 0, 1}, Table[Binomial[n, k]*(n - 1)^(n - k), {n, 2, 49}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 14 2017 *)
  • PARI
    for(n=0,15, for(k=0,n, print1(if(n==0 && k==0, 1, if(n==1 && k==0, 0, if(n==1 && k==1, 1, binomial(n,k)*(n-1)^(n-k)))), ", "))) \\ G. C. Greubel, Nov 14 2017

Formula

T(n, k) = C(n, k)*(n-1)^(n-k), for n>1.
E.g.f.: (-LambertW(-y)/y)^(x-1)/(1+LambertW(-y)). - Vladeta Jovovic
O.g.f. for row n: (x + n - 1)^n. - Geoffrey Critzer, Mar 21 2010

A081133 a(n) = n^n*binomial(n+2, 2).

Original entry on oeis.org

1, 3, 24, 270, 3840, 65625, 1306368, 29647548, 754974720, 21308126895, 660000000000, 22254310307658, 811365140791296, 31801886192186565, 1333440819066961920, 59553569091796875000, 2822351843277561397248
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

A diagonal of A081130.

Crossrefs

Sequences of the form (n+m)^n*binomial(n+2,2): this sequence (m=0), A081132 (m=1), A081131 (m=2), A053507 (m=3), A081196 (m=4).

Programs

  • Magma
    [(n^n*Binomial(n+2,2)): n in [0..20]]; // Vincenzo Librandi, Sep 22 2011
    
  • Maple
    seq(n^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
  • Mathematica
    Join[{1},Table[n^n Binomial[n+2,2],{n,20}]] (* Harvey P. Dale, Dec 27 2011 *)
  • Sage
    [n^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021

Formula

a(n) = n^n*(n+1)*(n+2)/2.

A081196 a(n) = (n+4)^n*binomial(n+2,2).

Original entry on oeis.org

1, 15, 216, 3430, 61440, 1240029, 28000000, 701538156, 19349176320, 583247465515, 19090807228416, 674680957031250, 25614222880669696, 1039980693455123385, 44977604109849722880, 2064633276062972568664
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Diagonal of A081130.

Crossrefs

Sequences of the form (n+m)^n*binomial(n+2,2): A081133 (m=0), A081132 (m=1), A081131 (m=2), A053507 (m=3), this sequence (m=4).

Programs

  • Magma
    [(n+4)^n*Binomial(n+2,2): n in [0..20]]; // Vincenzo Librandi, Aug 07 2013
    
  • Maple
    seq((n+4)^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
  • Mathematica
    Table[(n+4)^n Binomial[n+2, 2], {n, 0, 30}] (* Vincenzo Librandi, Aug 07 2013 *)
  • Sage
    [(n+4)^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021

Formula

a(n) = (n+4)^n*binomial(n+2,2).

A232055 Triangular array read by rows: T(n,k) is the number of forests of rooted labeled trees such that the vertex labeled with 1 is in a component (rooted tree) of size k, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 1, 2, 3, 4, 9, 16, 18, 27, 64, 125, 128, 162, 256, 625, 1296, 1250, 1440, 1920, 3125, 7776, 16807, 15552, 16875, 20480, 28125, 46656, 117649, 262144, 235298, 244944, 280000, 350000, 489888, 823543, 2097152
Offset: 1

Views

Author

Geoffrey Critzer, Nov 17 2013

Keywords

Comments

Column 1 is A000272.
T(n,n) = A000169(n).
T(n+1,n) = A000312(n).
T(n+2,n)/3 = A081132(n-1).

Examples

			1;
1,    2;
3,    4,    9;
16,   18,   27,   64;
125,  128,  162,  256,  625;
1296, 1250, 1440, 1920, 3125, 7776;
		

References

  • Miklos Bona, Introduction to Enumerative Combinatorics, McGraw Hill, 2007, page 282.

Programs

  • Mathematica
    Table[Table[Binomial[n,k](k+1)(k+1)^(k-1)(n-k+1)^(n-k-1),{k,0,n}],{n,0,7}]//Grid

Formula

T(n,k) = binomial(n-1,k-1)*k^(k-1)*(n-k+1)^(n-k-1).

A353122 Numbers k such that k^k*(k+1) + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 186, 198, 8390
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 24 2022

Keywords

Comments

Corresponding primes start 2, 3, 13, 109, 326593, 3874204891, ...
a(9) > 6000. - Jon E. Schoenfield, Jun 05 2022
a(10) > 18000. - Michael S. Branicky, Aug 08 2024

Examples

			9 is in the sequence because 9^9*(9+1) + 1 = 3874204891, which is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | IsPrime(n^n*(n+1) + 1)];
    
  • Mathematica
    Join[{0}, Select[Range[200], PrimeQ[#^#*(# + 1) + 1] &]] (* Amiram Eldar, Apr 25 2022 *)
  • PARI
    isok(k) = ispseudoprime(k^k*(k+1) + 1); \\ Michel Marcus, May 16 2022

Extensions

a(9) from Michael S. Branicky, Dec 22 2023
Showing 1-7 of 7 results.