cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A053506 a(n) = (n-1)*n^(n-2).

Original entry on oeis.org

0, 1, 6, 48, 500, 6480, 100842, 1835008, 38263752, 900000000, 23579476910, 681091006464, 21505924728444, 737020860878848, 27246730957031250, 1080863910568919040, 45798768824157052688, 2064472028642102280192, 98646963440126439346902, 4980736000000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

a(n) is the number of endofunctions f of [n] which interchange a pair a<->b and for all x in [n] some iterate f^k(x) = a. E.g., a(3) = 6: 1<->2<-3; 3->1<->2; 2<->3<-1; 1->2<->3; 1<->3<-2; 2->1<->3. - Len Smiley, Nov 27 2001
If offset is 0: right side of the binomial sum n-> sum( i^(i-1) * (n-i+1)^(n-i)*binomial(n, i), i=1..n) - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
a(n) is the number of birooted labeled trees on n nodes in which the two root nodes are adjacent. - N. J. A. Sloane, May 01 2018
a(n) is the number of ways to partition the complete graph K_n into two components and choose an arborescence on each component. - Harry Richman, May 11 2022

References

  • A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.36)
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.

Crossrefs

Cf. A001865 which is the sum of A000169 + A053506 + A065513 + A065888 + ...

Programs

  • GAP
    List([1..20], n-> (n-1)*n^(n-2)) # G. C. Greubel, May 15 2019
  • Magma
    [(n-1)*n^(n-2): n in [1..20]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    Table[(n-1)*n^(n-2), {n,20}]
  • PARI
    vector(20, n, (n-1)*n^(n-2)) \\ G. C. Greubel, Jan 18 2017
    
  • Sage
    [(n-1)*n^(n-2) for n in (1..20)] # G. C. Greubel, May 15 2019
    

Formula

E.g.f.: LambertW(-x)^2/2. - Vladeta Jovovic, Apr 07 2001
E.g.f. if offset 0: W(-x)^2/((1+W(-x))*x), W(x) Lambert's function (principal branch).
The sequence 1, 1, 6, 48, ... satisfies a(n) = (n*(n+1)^n + 0^n)/(n+1); it is the main diagonal of A085388. - Paul Barry, Jun 30 2003
a(n) = Sum_{i=1..n-1} binomial(n-1,i-1)*i^(i-2)*(n-i)^(n-i). - Dmitry Kruchinin, Oct 28 2013
If offset = 0 and a(0) = 1 then a(n) = Sum_{k=0..n} (-1)^(n-k)* binomial(-k,-n)*n^k (cf. A195242). - Peter Luschny, Apr 11 2016

A081131 a(n) = n^(n-2) * binomial(n,2).

Original entry on oeis.org

0, 0, 1, 9, 96, 1250, 19440, 352947, 7340032, 172186884, 4500000000, 129687123005, 4086546038784, 139788510734886, 5159146026151936, 204350482177734375, 8646911284551352320, 389289535005334947848, 18580248257778920521728, 937146152681201173795569
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Main diagonal of A081130.
a(n) is the number of partial functions f: {1,2,...,n} -> {1,2,...,n} that have exactly 2 undefined elements. - Geoffrey Critzer, Feb 08 2012
a(n+1) is the determinant of the circulant matrix having (n-1, n-2, ..., 0) as first row, for n >= 1. See A070896 for a variant, and A303260 for a related sequence. - M. F. Hasler, Apr 23 2018
a(n) is the number of birooted labeled trees on n nodes. - Brendan McKay, May 01 2018

Crossrefs

Sequences of the form (n+m)^n*binomial(n+2,2): A081133 (m=0), A081132 (m=1), this sequence (m=2), A053507 (m=3), A081196 (m=4).

Programs

  • Magma
    [n lt 2 select 0 else n^(n-2)*Binomial(n,2): n in [0..20]]; // G. C. Greubel, May 18 2021
    
  • Mathematica
    Join[{0},Table[n^(n-2) Binomial[n, 2], {n, 1, 20}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
  • Sage
    [0 if (n<2) else n^(n-2)*binomial(n,2) for n in (0..20)] # G. C. Greubel, May 18 2021

Formula

a(0) = a(1) = 0, a(n) = n^(n-2)*binomial(n,2).
E.g.f.: T(x)^2/(2*(1-T(x))) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Feb 08 2012

A061356 Triangle read by rows: T(n, k) is the number of labeled trees on n nodes with maximal node degree k (0 < k < n).

Original entry on oeis.org

1, 2, 1, 9, 6, 1, 64, 48, 12, 1, 625, 500, 150, 20, 1, 7776, 6480, 2160, 360, 30, 1, 117649, 100842, 36015, 6860, 735, 42, 1, 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 2

Views

Author

Olivier Gérard, Jun 07 2001

Keywords

Comments

Essentially the coefficients of the Abel polynomials (A137452). - Peter Luschny, Jun 12 2022
This is a formula from Comtet, Theorem F, vol. I, p. 81 (French edition) used in proving Theorem D.
If we let N = n+1, binomial(N-2, k-1)*(N-1)^(N-k-1) = binomial(n-1, k-1)*n^(n-k), so this sequence with offset 1,1 also gives the number of rooted forests of k trees over [n]. - Washington Bomfim, Jan 09 2008
Let S(n,k) be the signed triangle, S(n,k) = (-1)^(n-k)T(n,k), which starts 1, -2, 1, 9, -6, 1, ..., then the inverse of S is the triangle of idempotent numbers A059298. - Peter Luschny, Mar 13 2009
With offset 1 also number of labeled multigraphs of k components, n nodes, and no cycles except one loop in each component. See link below to have a picture showing the bijection between rooted forests and multigraphs of this kind. (Note that there are no labels in the picture, but the bijection remains true if we label the nodes.) - Washington Bomfim, Sep 04 2010
With offset 1, T(n,k) is the number of forests of rooted trees on n nodes with exactly k (rooted) trees. - Geoffrey Critzer, Feb 10 2012
Also the Bell transform of the sequence (n+1)^n (A000169(n+1)) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016
Abel polynomials A(n,x) = x*(x+n)^(n-1) satisfy d/dx A(n,x) = n*A(n-1,x+1). - Michael Somos, May 10 2024
Also, T(n,k) is the number of parking functions with k ties. - Kyle Celano, Aug 18 2025

Examples

			Triangle begins
    1;
    2,     1;
    9,     6,     1;
   64,    48,    12,    1;
  625,   500,   150,   20,    1;
 7776,  6480,  2160,  360,   30,    1;
 ...
From _Peter Bala_, Sep 21 2012: (Start)
O.g.f.'s for the diagonals begin:
1/(1-x) = 1 + x + x^2 + x^3 + ...
2*x/(1-x)^3 = 2 + 6*x + 12*x^3 + ... A002378(n+1)
(9+3*x)/(1-x)^5 = 9 + 48*x + 150*x^2 + ... 3*A004320(n+1)
The numerator polynomials are the row polynomials of A155163.
(End)
		

References

  • L. Comtet, Analyse Combinatoire, P.U.F., Paris 1970. Volume 1, p 81.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974.

Crossrefs

Variant of A137452.
First diagonal is A002378.
Row sums give A000272.
Cf. A028421, A059297, A139526 (row reverse), A155163, A202017.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    BellMatrix(n -> (n+1)^n, 12); # Peter Luschny, Jan 21 2016
  • Mathematica
    nn = 7; t = Sum[n^(n - 1)  x^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y t], {x, 0, nn}], {x, y}], 1]] // Flatten  (* Geoffrey Critzer, Feb 10 2012 *)
    T[n_, m_] := T[n, m] = Binomial[n, m]*Sum[m^k*T[n-m, k], {k, 1, n-m}]; T[n_, n_] = 1; Table[T[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *)
    Table[Binomial[n - 2, k - 1]*(n - 1)^(n - k - 1), {n, 2, 12}, {k, 1, n - 1}] // Flatten (* G. C. Greubel, Nov 12 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 10;
    M = BellMatrix[(# + 1)^#&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    create_list(binomial(n,k)*(n+1)^(n-k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 01 2014 */
    
  • PARI
    for(n=2,11, for(k=1,n-1, print1(binomial(n-2, k-1)*(n-1)^(n-k-1), ", "))) \\ G. C. Greubel, Nov 12 2017
  • Sage
    # uses[bell_matrix from A264428]
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    bell_matrix(lambda n: (n+1)^n, 12) # Peter Luschny, Jan 21 2016
    

Formula

T(n, k) = binomial(n-2, k-1)*(n-1)^(n-k-1).
E.g.f.: (-LambertW(-y)/y)^(x+1)/(1+LambertW(-y)). - Vladeta Jovovic
From Peter Bala, Sep 21 2012: (Start)
Let T(x) = Sum_{n >= 0} n^(n-1)*x^n/n! denote the tree function of A000169. E.g.f.: F(x,t) := exp(t*T(x)) - 1 = -1 + {T(x)/x}^t = t*x + t*(2 + t)*x^2/2! + t*(9 + 6*t + t^2)*x^3/3! + ....
The compositional inverse with respect to x of (1/t)*F(x,t) is the e.g.f. for a signed version of the row reverse of A028421.
The row generating polynomials are the Abel polynomials A(n,x) = x*(x+n)^(n-1) for n >= 1.
Define B(n,x) = x^n/(1+n*x)^(n+1) = (-1)^n*A(-n,-1/x) for n >= 1. The k-th column entries are the coefficients in the formal series expansion of x^k in terms of B(n,x). For example, Col. 1: x = B(1,x) + 2*B(2,x) + 9*B(3,x) + 64*B(4,x) + ..., Col. 2: x^2 = B(2,x) + 6*B(3,x) + 48*B(4,x) + 500*B(5,x) + ... Compare with A059297.
n-th row sum = A000272(n+1).
Row reverse triangle is A139526.
The o.g.f.'s for the diagonals of the triangle are the rational functions R(n,x)/(1-x)^(2*n+1), where R(n,x) are the row polynomials of A155163. See below for examples.
(End)
T(n,m) = C(n,m)*Sum_{k=1..n-m} m^k*T(n-m,k), T(n,n) = 1. - Vladimir Kruchinin, Mar 31 2015

A081132 a(n) = (n+1)^n*binomial(n+2,2).

Original entry on oeis.org

1, 6, 54, 640, 9375, 163296, 3294172, 75497472, 1937102445, 55000000000, 1711870023666, 57954652913664, 2120125746145771, 83340051191685120, 3503151123046875000, 156797324626531188736, 7445162356977030877593
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

A diagonal of A081130.
a(n) is the sum of all the fixed points in the set of endofunctions on {1,2,...,n+1}, i.e., the functions f:{1,2,...,n+1} -> {1,2,...,n+1}. - Geoffrey Critzer, Sep 17 2011

Examples

			a(1) = 6 because there are four functions from {1,2} into {1,2}: (1*,1) (1*,2*) (2,1) (2,2*) and the fixed points (marked *) sum to 6.
		

Crossrefs

Sequences of the form (n+m)^n*binomial(n+2,2): A081133 (m=0), this sequence (m=1), A081131 (m=2), A053507 (m=3), A081196 (m=4).

Programs

  • Magma
    [((n+1)^n*Binomial(n+2,2)): n in [0..20]]; // Vincenzo Librandi, Sep 21 2011
    
  • Maple
    seq((n+1)^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
  • Mathematica
    Table[n^n*(n+1)/2,{n,20}]
  • Sage
    [(n+1)^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021

Formula

a(n) = (n+1)^n*binomial(n+2,2).

A081133 a(n) = n^n*binomial(n+2, 2).

Original entry on oeis.org

1, 3, 24, 270, 3840, 65625, 1306368, 29647548, 754974720, 21308126895, 660000000000, 22254310307658, 811365140791296, 31801886192186565, 1333440819066961920, 59553569091796875000, 2822351843277561397248
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

A diagonal of A081130.

Crossrefs

Sequences of the form (n+m)^n*binomial(n+2,2): this sequence (m=0), A081132 (m=1), A081131 (m=2), A053507 (m=3), A081196 (m=4).

Programs

  • Magma
    [(n^n*Binomial(n+2,2)): n in [0..20]]; // Vincenzo Librandi, Sep 22 2011
    
  • Maple
    seq(n^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
  • Mathematica
    Join[{1},Table[n^n Binomial[n+2,2],{n,20}]] (* Harvey P. Dale, Dec 27 2011 *)
  • Sage
    [n^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021

Formula

a(n) = n^n*(n+1)*(n+2)/2.

A053508 a(n) = binomial(n-1,3)*n^(n-4).

Original entry on oeis.org

0, 0, 0, 1, 20, 360, 6860, 143360, 3306744, 84000000, 2338460520, 70946979840, 2332989862060, 82726831323136, 3148511132812500, 128071114403348480, 5546563698427324720, 254873089955815096320, 12387799656377835411984, 635043840000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.

Crossrefs

Programs

  • GAP
    List([1..25], n-> Binomial(n-1,3)*n^(n-4)); # G. C. Greubel, May 15 2019
  • Magma
    [Binomial(n-1,3)*n^(n-4): n in [1..25]]; // G. C. Greubel, Nov 14 2017
    
  • Mathematica
    Table[Binomial[n-1,3]n^(n-4),{n,25}] (* Harvey P. Dale, Jun 17 2014 *)
    With[{nmax = 25}, CoefficientList[Series[LambertW[-x]^4/4!, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 14 2017 *)
  • PARI
    vector(25, n, binomial(n-1,3)*n^(n-4)) \\ G. C. Greubel, Jan 18 2017
    
  • Sage
    [binomial(n-1,3)*n^(n-4) for n in (1..25)] # G. C. Greubel, May 15 2019
    

Formula

E.g.f.: LambertW(-x)^4/4!. - Vladeta Jovovic, Apr 07 2001

A053509 a(n) = binomial(n-1,4)*n^(n-5).

Original entry on oeis.org

0, 0, 0, 0, 1, 30, 735, 17920, 459270, 12600000, 372027810, 11824496640, 403786706895, 14772648450560, 577227041015625, 24013333950627840, 1060372471758165020, 49558656380297379840, 2444960458495625410260, 127008768000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.

Crossrefs

Programs

  • GAP
    List([1..25], n-> Binomial(n-1,4)*n^(n-5)) # G. C. Greubel, May 15 2019
  • Magma
    [Binomial(n-1,4)*n^(n-5): n in [1..30]]; // G. C. Greubel, Nov 14 2017
    
  • Mathematica
    Table[Binomial[n-1,4]*n^(n-5), {n,1,25}] (* G. C. Greubel, Jan 18 2017 *)
  • PARI
    vector(25, n, binomial(n-1,4)*n^(n-5)) \\ G. C. Greubel, Jan 18 2017
    
  • Sage
    [binomial(n-1,4)*n^(n-5) for n in (1..25)] # G. C. Greubel, May 15 2019
    

Formula

E.g.f.: -LambertW(-x)^5/5!. - Vladeta Jovovic, Apr 07 2001

A065513 Number of endofunctions of [n] with a cycle a->b->c->a and for all x in [n], some iterate f^k(x)=a.

Original entry on oeis.org

2, 24, 300, 4320, 72030, 1376256, 29760696, 720000000, 19292299290, 567575838720, 18197320924068, 631732166467584, 23613833496093750, 945755921747804160, 40410678374256222960, 1835086247681868693504, 88263072551692077310386, 4482662400000000000000000
Offset: 3

Views

Author

Len Smiley, Nov 27 2001

Keywords

Examples

			a(4)=24: 1->2->3->1<-4; 2->3->1->2<-4; 3->1->2->3<-4 1->3->2->1<-4; 3->2->1->3<-4; 2->1->3->2<-4 (repeat with 1,2, then 3 excluded from cycle)
		

Crossrefs

Cf. A000169 (unique cycle is length 1), A053506 (unique cycle has length 2).
Column k=3 of A201685.

Programs

  • Magma
    [(n-1)*(n-2)*n^(n-3): n in [3..50]]; // G. C. Greubel, Nov 14 2017
  • Maple
    T := x->-LambertW(-x); a := []; f := series((T(x))^3/3,x,24); for m from 1 to 24 do a := [op(a),op(2*m-1,f)*(m+2)! ] od; print(a);
  • Mathematica
    nn = 18; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
    Range[0, nn]! CoefficientList[Series[2 t^3/3!, {x, 0, nn}], x] (* Geoffrey Critzer, Aug 14 2013 *)
  • PARI
    for(n=3,50, print1((n-1)*(n-2)*n^(n-3), ", ")) \\ G. C. Greubel, Nov 14 2017
    

Formula

E.g.f.: T^3/3 where T=T(x) is Euler's tree function (see A000169).
a(n) = (n-1)*(n-2)*n^(n-3). - Vaclav Kotesovec, Oct 05 2013
a(n) = 2*A053507(n). - Vaclav Kotesovec, Oct 07 2016

A065889 a(n) = number of unicyclic connected simple graphs whose cycle has length 4.

Original entry on oeis.org

3, 60, 1080, 20580, 430080, 9920232, 252000000, 7015381560, 212840939520, 6998969586180, 248180493969408, 9445533398437500, 384213343210045440, 16639691095281974160, 764619269867445288960, 37163398969133506235952, 1905131520000000000000000
Offset: 4

Views

Author

Len Smiley, Nov 27 2001

Keywords

Crossrefs

A065888 ( = 2*A065889) counts sagittal graphs with one cycle (length 4).
A column of A098909, A053507.
Main diagonal of A144209.
Cf. A053508.

Programs

  • GAP
    List([4..25], n-> 12*Binomial(n,4)*n^(n-5)); # G. C. Greubel, May 16 2019
  • Magma
    [12*Binomial(n,4)*n^(n-5) : n in [4..25]]; // G. C. Greubel, May 16 2019
    
  • Mathematica
    Table[12*Binomial[n,4]*n^(n-5), {n,4,25}] (* G. C. Greubel, May 16 2019 *)
  • PARI
    {a(n) = 12*binomial(n,4)*n^(n-5)}; \\ G. C. Greubel, May 16 2019
    
  • Sage
    [12*binomial(n,4)*n^(n-5) for n in (4..25)] # G. C. Greubel, May 16 2019
    

Formula

E.g.f.: T^4/8, where T = T(x) is Euler's tree function (see A000169).
a(n) = (n-1)*(n-2)*(n-3)*n^(n-4)/2. - Vladeta Jovovic, Oct 26 2004
a(n) = 3 * A053508(n). - Alois P. Heinz, Jan 09 2025

A081196 a(n) = (n+4)^n*binomial(n+2,2).

Original entry on oeis.org

1, 15, 216, 3430, 61440, 1240029, 28000000, 701538156, 19349176320, 583247465515, 19090807228416, 674680957031250, 25614222880669696, 1039980693455123385, 44977604109849722880, 2064633276062972568664
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Diagonal of A081130.

Crossrefs

Sequences of the form (n+m)^n*binomial(n+2,2): A081133 (m=0), A081132 (m=1), A081131 (m=2), A053507 (m=3), this sequence (m=4).

Programs

  • Magma
    [(n+4)^n*Binomial(n+2,2): n in [0..20]]; // Vincenzo Librandi, Aug 07 2013
    
  • Maple
    seq((n+4)^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
  • Mathematica
    Table[(n+4)^n Binomial[n+2, 2], {n, 0, 30}] (* Vincenzo Librandi, Aug 07 2013 *)
  • Sage
    [(n+4)^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021

Formula

a(n) = (n+4)^n*binomial(n+2,2).
Showing 1-10 of 14 results. Next