cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000169 Number of labeled rooted trees with n nodes: n^(n-1).

Original entry on oeis.org

1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601, 743008370688, 23298085122481, 793714773254144, 29192926025390625, 1152921504606846976, 48661191875666868481, 2185911559738696531968, 104127350297911241532841, 5242880000000000000000000
Offset: 1

Views

Author

Keywords

Comments

Also the number of connected transitive subtree acyclic digraphs on n vertices. - Robert Castelo, Jan 06 2001
For any given integer k, a(n) is also the number of functions from {1,2,...,n} to {1,2,...,n} such that the sum of the function values is k mod n. - Sharon Sela (sharonsela(AT)hotmail.com), Feb 16 2002
The n-th term of a geometric progression with first term 1 and common ratio n: a(1) = 1 -> 1,1,1,1,... a(2) = 2 -> 1,2,... a(3) = 9 -> 1,3,9,... a(4) = 64 -> 1,4,16,64,... - Amarnath Murthy, Mar 25 2004
All rational solutions to the equation x^y = y^x, with x < y, are given by x = A000169(n+1)/A000312(n), y = A000312(n+1)/A007778(n), where n = 1, 2, 3, ... . - Nick Hobson, Nov 30 2006
a(n+1) is also the number of partial functions on n labeled objects. - Franklin T. Adams-Watters, Dec 25 2006
In other words, if A is a finite set of size n-1, then a(n) is the number of binary relations on A that are also functions. Note that a(n) = Sum_{k=0..n-1} binomial(n-1,k)*(n-1)^k = n^(n-1), where binomial(n-1,k) is the number of ways to select a domain D of size k from A and (n-1)^k is the number of functions from D to A. - Dennis P. Walsh, Apr 21 2011
This is the fourth member of a set of which the other members are the symmetric group, full transformation semigroup, and symmetric inverse semigroup. For the first three, see A000142, A000312, A002720. - Peter J. Cameron, Nov 03 2024.
More generally, consider the class of sequences of the form a(n) = (n*c(1)*...*c(i))^(n-1). This sequence has c(1)=1. A052746 has a(n) = (2*n)^(n-1), A052756 has a(n) = (3*n)^(n-1), A052764 has a(n) = (4*n)^(n-1), A052789 has a(n) = (5*n)^(n-1) for n>0. These sequences have a combinatorial structure like simple grammars. - Ctibor O. Zizka, Feb 23 2008
a(n) is equal to the logarithmic transform of the sequence b(n) = n^(n-2) starting at b(2). - Kevin Hu (10thsymphony(AT)gmail.com), Aug 23 2010
Also, number of labeled connected multigraphs of order n without cycles except one loop. See link below to have a picture showing the bijection between rooted trees and multigraphs of this kind. (Note that there are no labels in the picture, but the bijection remains true if we label the nodes.) - Washington Bomfim, Sep 04 2010
a(n) is also the number of functions f:{1,2,...,n} -> {1,2,...,n} such that f(1) = 1.
For a signed version of A000169 arising from the Vandermonde determinant of (1,1/2,...,1/n), see the Mathematica section. - Clark Kimberling, Jan 02 2012
Numerator of (1+1/(n-1))^(n-1) for n>1. - Jean-François Alcover, Jan 14 2013
Right edge of triangle A075513. - Michel Marcus, May 17 2013
a(n+1) is the number of n x n binary matrices with no more than a single one in each row. Partitioning the set of such matrices by the number k of rows with a one, we obtain a(n+1) = Sum_{k=0..n} binomial(n,k)*n^k = (n+1)^n. - Dennis P. Walsh, May 27 2014
Central terms of triangle A051129: a(n) = A051129(2*n-1,n). - Reinhard Zumkeller, Sep 14 2014
a(n) is the row sum of the n-th rows of A248120 and A055302, so it enumerates the monomials in the expansion of [x(1) + x(2) + ... + x(n)]^(n-1). - Tom Copeland, Jul 17 2015
For any given integer k, a(n) is the number of sums x_1 + ... + x_m = k (mod n) such that: x_1, ..., x_m are nonnegative integers less than n, the order of the summands does not matter, and each integer appears fewer than n times as a summand. - Carlo Sanna, Oct 04 2015
a(n) is the number of words of length n-1 over an alphabet of n letters. - Joerg Arndt, Oct 07 2015
a(n) is the number of parking functions whose largest element is n and length is n. For example, a(3) = 9 because there are nine such parking functions, namely (1,2,3), (1,3,2), (2,3,1), (2,1,3), (3,1,2), (3,2,1), (1,1,3), (1,3,1), (3,1,1). - Ran Pan, Nov 15 2015
Consider the following problem: n^2 cells are arranged in a square array. A step can be defined as going from one cell to the one directly above it, to the right of it or under it. A step above cannot be followed by a step below and vice versa. Once the last column of the square array is reached, you can only take steps down. a(n) is the number of possible paths (i.e., sequences of steps) from the cell on the bottom left to the cell on the bottom right. - Nicolas Nagel, Oct 13 2016
The rationals c(n) = a(n+1)/a(n), n >= 1, appear in the proof of G. Pólya's "elementary, but not too elementary, theorem": Sum_{n>=1} (Product_{k=1..n} a_k)^(1/n) < exp(1)*Sum_{n>=1} a_n, for n >= 1, with the sequence {a_k}{k>=1} of nonnegative terms, not all equal to 0. - _Wolfdieter Lang, Mar 16 2018
Coefficients of the generating series for the preLie operadic algebra. Cf. p. 417 of the Loday et al. paper. - Tom Copeland, Jul 08 2018
a(n)/2^(n-1) is the square of the determinant of the n X n matrix M_n with elements m(j,k) = cos(Pi*j*k/n). See Zhi-Wei Sun, Petrov link. - Hugo Pfoertner, Sep 19 2021
a(n) is the determinant of the n X n matrix P_n such that, when indexed [0, n), P(0, j) = 1, P(i <= j) = i, and P(i > j) = i-n. - C.S. Elder, Mar 11 2024

Examples

			For n=3, a(3)=9 because there are exactly 9 binary relations on A={1, 2} that are functions, namely: {}, {(1,1)}, {(1,2)}, {(2,1)}, {(2,2)}, {(1,1),(2,1)}, {(1,1),(2,2)}, {(1,2),(2,1)} and {(1,2),(2,2)}. - _Dennis P. Walsh_, Apr 21 2011
G.f. = x + 2*x^2 + 9*x^3 + 64*x^4 + 625*x^5 + 7776*x^6 + 117649*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 169.
  • Jonathan L. Gross and Jay Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 524.
  • Hannes Heikinheimo, Heikki Mannila and Jouni K. Seppnen, Finding Trees from Unordered 01 Data, in Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer Science, Volume 4213/2006, Springer-Verlag. - N. J. A. Sloane, Jul 09 2009
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 63.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 25, Prop. 5.3.2, and p. 37, (5.52).

Crossrefs

Programs

  • Haskell
    a000169 n = n ^ (n - 1)  -- Reinhard Zumkeller, Sep 14 2014
    
  • Magma
    [n^(n-1): n in [1..20]]; // Vincenzo Librandi, Jul 17 2015
    
  • Maple
    A000169 := n -> n^(n-1);
    # second program:
    spec := [A, {A=Prod(Z, Set(A))}, labeled]; [seq(combstruct[count](spec, size=n), n=1..20)];
    # third program:
    A000169 := n -> add((-1)^(n+k-1)*pochhammer(n, k)*Stirling2(n-1, k), k = 0..n-1):
    seq(A000169(n), n = 1 .. 23);  # Mélika Tebni, May 07 2023
  • Mathematica
    Table[n^(n - 1), {n, 1, 20}] (* Stefan Steinerberger, Apr 01 2006 *)
    Range[0, 18]! CoefficientList[ Series[ -LambertW[-x], {x, 0, 18}], x] // Rest (* Robert G. Wilson v, updated by Jean-François Alcover, Oct 14 2019 *)
    (* Next, a signed version A000169 from the Vandermonde determinant of (1,1/2,...,1/n) *)
    f[j_] := 1/j; z = 12;
    v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
    Table[v[n], {n, 1, z}]
    1/%  (* A203421 *)
    Table[v[n]/v[n + 1], {n, 1, z - 1}]  (* A000169 signed *)
    (* Clark Kimberling, Jan 02 2012 *)
    a[n_]:=Det[Table[If[i==0,1,If[i<=j,i,i-n]],{i,0,n-1},{j,0,n-1}]]; Array[a,20] (* Stefano Spezia, Mar 12 2024 *)
  • MuPAD
    n^(n-1) $ n=1..20 /* Zerinvary Lajos, Apr 01 2007 */
    
  • PARI
    a(n) = n^(n-1)
    
  • Python
    def a(n): return n**(n-1)
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Sep 19 2021
    
  • Python
    from sympy import Matrix
    def P(n): return [[ (i-n if i > j else i) + (i == 0) for j in range(n) ] for i in range(n)]
    print(*(Matrix(P(n)).det() for n in range(1, 21)), sep=', ') # C.S. Elder, Mar 12 2024

Formula

The e.g.f. T(x) = Sum_{n>=1} n^(n-1)*x^n/n! satisfies T(x) = x*exp(T(x)), so T(x) is the functional inverse (series reversion) of x*exp(-x).
Also T(x) = -LambertW(-x) where W(x) is the principal branch of Lambert's function.
T(x) is sometimes called Euler's tree function.
a(n) = A000312(n-1)*A128434(n,1)/A128433(n,1). - Reinhard Zumkeller, Mar 03 2007
E.g.f.: LambertW(x)=x*G(0); G(k) = 1 - x*((2*k+2)^(2*k))/(((2*k+1)^(2*k)) - x*((2*k+1)^(2*k))*((2*k+3)^(2*k+1))/(x*((2*k+3)^(2*k+1)) - ((2*k+2)^(2*k+1))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 30 2011
a(n) = Sum_{i=1..n} binomial(n-1,i-1)*i^(i-2)*(n-i)^(n-i). - Dmitry Kruchinin, Oct 28 2013
Limit_{n->oo} a(n)/A000312(n-1) = e. - Daniel Suteu, Jul 23 2016
From Amiram Eldar, Nov 20 2020: (Start)
Sum_{n>=1} 1/a(n) = A098686.
Sum_{n>=1} (-1)^(n+1)/a(n) = A262974. (End)
a(n) = Sum_{k=0..n-1} (-1)^(n+k-1)*Pochhammer(n, k)*Stirling2(n-1, k). - Mélika Tebni, May 07 2023
In terms of Eulerian numbers A340556(n,k) of the second order Sum_{m>=1} m^(m+n) z^m/m! = 1/(1-T(z))^(2n+1) * Sum_{k=0..n} A2(n,k) T(z)^k. - Marko Riedel, Jan 10 2024

A053506 a(n) = (n-1)*n^(n-2).

Original entry on oeis.org

0, 1, 6, 48, 500, 6480, 100842, 1835008, 38263752, 900000000, 23579476910, 681091006464, 21505924728444, 737020860878848, 27246730957031250, 1080863910568919040, 45798768824157052688, 2064472028642102280192, 98646963440126439346902, 4980736000000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

a(n) is the number of endofunctions f of [n] which interchange a pair a<->b and for all x in [n] some iterate f^k(x) = a. E.g., a(3) = 6: 1<->2<-3; 3->1<->2; 2<->3<-1; 1->2<->3; 1<->3<-2; 2->1<->3. - Len Smiley, Nov 27 2001
If offset is 0: right side of the binomial sum n-> sum( i^(i-1) * (n-i+1)^(n-i)*binomial(n, i), i=1..n) - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
a(n) is the number of birooted labeled trees on n nodes in which the two root nodes are adjacent. - N. J. A. Sloane, May 01 2018
a(n) is the number of ways to partition the complete graph K_n into two components and choose an arborescence on each component. - Harry Richman, May 11 2022

References

  • A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.36)
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.

Crossrefs

Cf. A001865 which is the sum of A000169 + A053506 + A065513 + A065888 + ...

Programs

  • GAP
    List([1..20], n-> (n-1)*n^(n-2)) # G. C. Greubel, May 15 2019
  • Magma
    [(n-1)*n^(n-2): n in [1..20]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    Table[(n-1)*n^(n-2), {n,20}]
  • PARI
    vector(20, n, (n-1)*n^(n-2)) \\ G. C. Greubel, Jan 18 2017
    
  • Sage
    [(n-1)*n^(n-2) for n in (1..20)] # G. C. Greubel, May 15 2019
    

Formula

E.g.f.: LambertW(-x)^2/2. - Vladeta Jovovic, Apr 07 2001
E.g.f. if offset 0: W(-x)^2/((1+W(-x))*x), W(x) Lambert's function (principal branch).
The sequence 1, 1, 6, 48, ... satisfies a(n) = (n*(n+1)^n + 0^n)/(n+1); it is the main diagonal of A085388. - Paul Barry, Jun 30 2003
a(n) = Sum_{i=1..n-1} binomial(n-1,i-1)*i^(i-2)*(n-i)^(n-i). - Dmitry Kruchinin, Oct 28 2013
If offset = 0 and a(0) = 1 then a(n) = Sum_{k=0..n} (-1)^(n-k)* binomial(-k,-n)*n^k (cf. A195242). - Peter Luschny, Apr 11 2016

A053507 a(n) = binomial(n-1,2)*n^(n-3).

Original entry on oeis.org

0, 0, 1, 12, 150, 2160, 36015, 688128, 14880348, 360000000, 9646149645, 283787919360, 9098660462034, 315866083233792, 11806916748046875, 472877960873902080, 20205339187128111480, 917543123840934346752, 44131536275846038655193
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

Number of connected unicyclic simple graphs on n labeled nodes such that the unique cycle has length 3. - Len Smiley, Nov 27 2001
Each simple graph (of this type) corresponds to exactly two 'functional digraphs' counted by A065513.

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.

Crossrefs

Equals 2*A065513. A diagonal of A081130.

Programs

  • GAP
    List([1..20], n-> Binomial(n-1,2)*n^(n-3)); # G. C. Greubel, May 15 2019
  • Magma
    [Binomial(n-1,2)*n^(n-3):n in [1..20]]; // Vincenzo Librandi, Sep 22 2011
    
  • Magma
    [Binomial(n-1,2)*n^(n-3): n in [1..20]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Rest[Range[0, nn]! CoefficientList[Series[t^3/3!, {x, 0, nn}], x]] (* Geoffrey Critzer, Jan 22 2012 *)
    Table[Binomial[n-1,2]n^(n-3),{n,20}] (* Harvey P. Dale, Sep 24 2019 *)
  • PARI
    vector(20, n, binomial(n-1,2)*n^(n-3)) \\ G. C. Greubel, Jan 18 2017
    
  • Sage
    [binomial(n-1,2)*n^(n-3) for n in (1..20)] # G. C. Greubel, May 15 2019
    

Formula

E.g.f.: -LambertW(-x)^3/3!. - Vladeta Jovovic, Apr 07 2001

A061356 Triangle read by rows: T(n, k) is the number of labeled trees on n nodes with maximal node degree k (0 < k < n).

Original entry on oeis.org

1, 2, 1, 9, 6, 1, 64, 48, 12, 1, 625, 500, 150, 20, 1, 7776, 6480, 2160, 360, 30, 1, 117649, 100842, 36015, 6860, 735, 42, 1, 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 2

Views

Author

Olivier Gérard, Jun 07 2001

Keywords

Comments

Essentially the coefficients of the Abel polynomials (A137452). - Peter Luschny, Jun 12 2022
This is a formula from Comtet, Theorem F, vol. I, p. 81 (French edition) used in proving Theorem D.
If we let N = n+1, binomial(N-2, k-1)*(N-1)^(N-k-1) = binomial(n-1, k-1)*n^(n-k), so this sequence with offset 1,1 also gives the number of rooted forests of k trees over [n]. - Washington Bomfim, Jan 09 2008
Let S(n,k) be the signed triangle, S(n,k) = (-1)^(n-k)T(n,k), which starts 1, -2, 1, 9, -6, 1, ..., then the inverse of S is the triangle of idempotent numbers A059298. - Peter Luschny, Mar 13 2009
With offset 1 also number of labeled multigraphs of k components, n nodes, and no cycles except one loop in each component. See link below to have a picture showing the bijection between rooted forests and multigraphs of this kind. (Note that there are no labels in the picture, but the bijection remains true if we label the nodes.) - Washington Bomfim, Sep 04 2010
With offset 1, T(n,k) is the number of forests of rooted trees on n nodes with exactly k (rooted) trees. - Geoffrey Critzer, Feb 10 2012
Also the Bell transform of the sequence (n+1)^n (A000169(n+1)) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016
Abel polynomials A(n,x) = x*(x+n)^(n-1) satisfy d/dx A(n,x) = n*A(n-1,x+1). - Michael Somos, May 10 2024
Also, T(n,k) is the number of parking functions with k ties. - Kyle Celano, Aug 18 2025

Examples

			Triangle begins
    1;
    2,     1;
    9,     6,     1;
   64,    48,    12,    1;
  625,   500,   150,   20,    1;
 7776,  6480,  2160,  360,   30,    1;
 ...
From _Peter Bala_, Sep 21 2012: (Start)
O.g.f.'s for the diagonals begin:
1/(1-x) = 1 + x + x^2 + x^3 + ...
2*x/(1-x)^3 = 2 + 6*x + 12*x^3 + ... A002378(n+1)
(9+3*x)/(1-x)^5 = 9 + 48*x + 150*x^2 + ... 3*A004320(n+1)
The numerator polynomials are the row polynomials of A155163.
(End)
		

References

  • L. Comtet, Analyse Combinatoire, P.U.F., Paris 1970. Volume 1, p 81.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974.

Crossrefs

Variant of A137452.
First diagonal is A002378.
Row sums give A000272.
Cf. A028421, A059297, A139526 (row reverse), A155163, A202017.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    BellMatrix(n -> (n+1)^n, 12); # Peter Luschny, Jan 21 2016
  • Mathematica
    nn = 7; t = Sum[n^(n - 1)  x^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y t], {x, 0, nn}], {x, y}], 1]] // Flatten  (* Geoffrey Critzer, Feb 10 2012 *)
    T[n_, m_] := T[n, m] = Binomial[n, m]*Sum[m^k*T[n-m, k], {k, 1, n-m}]; T[n_, n_] = 1; Table[T[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *)
    Table[Binomial[n - 2, k - 1]*(n - 1)^(n - k - 1), {n, 2, 12}, {k, 1, n - 1}] // Flatten (* G. C. Greubel, Nov 12 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 10;
    M = BellMatrix[(# + 1)^#&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    create_list(binomial(n,k)*(n+1)^(n-k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 01 2014 */
    
  • PARI
    for(n=2,11, for(k=1,n-1, print1(binomial(n-2, k-1)*(n-1)^(n-k-1), ", "))) \\ G. C. Greubel, Nov 12 2017
  • Sage
    # uses[bell_matrix from A264428]
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    bell_matrix(lambda n: (n+1)^n, 12) # Peter Luschny, Jan 21 2016
    

Formula

T(n, k) = binomial(n-2, k-1)*(n-1)^(n-k-1).
E.g.f.: (-LambertW(-y)/y)^(x+1)/(1+LambertW(-y)). - Vladeta Jovovic
From Peter Bala, Sep 21 2012: (Start)
Let T(x) = Sum_{n >= 0} n^(n-1)*x^n/n! denote the tree function of A000169. E.g.f.: F(x,t) := exp(t*T(x)) - 1 = -1 + {T(x)/x}^t = t*x + t*(2 + t)*x^2/2! + t*(9 + 6*t + t^2)*x^3/3! + ....
The compositional inverse with respect to x of (1/t)*F(x,t) is the e.g.f. for a signed version of the row reverse of A028421.
The row generating polynomials are the Abel polynomials A(n,x) = x*(x+n)^(n-1) for n >= 1.
Define B(n,x) = x^n/(1+n*x)^(n+1) = (-1)^n*A(-n,-1/x) for n >= 1. The k-th column entries are the coefficients in the formal series expansion of x^k in terms of B(n,x). For example, Col. 1: x = B(1,x) + 2*B(2,x) + 9*B(3,x) + 64*B(4,x) + ..., Col. 2: x^2 = B(2,x) + 6*B(3,x) + 48*B(4,x) + 500*B(5,x) + ... Compare with A059297.
n-th row sum = A000272(n+1).
Row reverse triangle is A139526.
The o.g.f.'s for the diagonals of the triangle are the rational functions R(n,x)/(1-x)^(2*n+1), where R(n,x) are the row polynomials of A155163. See below for examples.
(End)
T(n,m) = C(n,m)*Sum_{k=1..n-m} m^k*T(n-m,k), T(n,n) = 1. - Vladimir Kruchinin, Mar 31 2015

A053508 a(n) = binomial(n-1,3)*n^(n-4).

Original entry on oeis.org

0, 0, 0, 1, 20, 360, 6860, 143360, 3306744, 84000000, 2338460520, 70946979840, 2332989862060, 82726831323136, 3148511132812500, 128071114403348480, 5546563698427324720, 254873089955815096320, 12387799656377835411984, 635043840000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.

Crossrefs

Programs

  • GAP
    List([1..25], n-> Binomial(n-1,3)*n^(n-4)); # G. C. Greubel, May 15 2019
  • Magma
    [Binomial(n-1,3)*n^(n-4): n in [1..25]]; // G. C. Greubel, Nov 14 2017
    
  • Mathematica
    Table[Binomial[n-1,3]n^(n-4),{n,25}] (* Harvey P. Dale, Jun 17 2014 *)
    With[{nmax = 25}, CoefficientList[Series[LambertW[-x]^4/4!, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 14 2017 *)
  • PARI
    vector(25, n, binomial(n-1,3)*n^(n-4)) \\ G. C. Greubel, Jan 18 2017
    
  • Sage
    [binomial(n-1,3)*n^(n-4) for n in (1..25)] # G. C. Greubel, May 15 2019
    

Formula

E.g.f.: LambertW(-x)^4/4!. - Vladeta Jovovic, Apr 07 2001
Showing 1-5 of 5 results.