cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A081131 a(n) = n^(n-2) * binomial(n,2).

Original entry on oeis.org

0, 0, 1, 9, 96, 1250, 19440, 352947, 7340032, 172186884, 4500000000, 129687123005, 4086546038784, 139788510734886, 5159146026151936, 204350482177734375, 8646911284551352320, 389289535005334947848, 18580248257778920521728, 937146152681201173795569
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Main diagonal of A081130.
a(n) is the number of partial functions f: {1,2,...,n} -> {1,2,...,n} that have exactly 2 undefined elements. - Geoffrey Critzer, Feb 08 2012
a(n+1) is the determinant of the circulant matrix having (n-1, n-2, ..., 0) as first row, for n >= 1. See A070896 for a variant, and A303260 for a related sequence. - M. F. Hasler, Apr 23 2018
a(n) is the number of birooted labeled trees on n nodes. - Brendan McKay, May 01 2018

Crossrefs

Sequences of the form (n+m)^n*binomial(n+2,2): A081133 (m=0), A081132 (m=1), this sequence (m=2), A053507 (m=3), A081196 (m=4).

Programs

  • Magma
    [n lt 2 select 0 else n^(n-2)*Binomial(n,2): n in [0..20]]; // G. C. Greubel, May 18 2021
    
  • Mathematica
    Join[{0},Table[n^(n-2) Binomial[n, 2], {n, 1, 20}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
  • Sage
    [0 if (n<2) else n^(n-2)*binomial(n,2) for n in (0..20)] # G. C. Greubel, May 18 2021

Formula

a(0) = a(1) = 0, a(n) = n^(n-2)*binomial(n,2).
E.g.f.: T(x)^2/(2*(1-T(x))) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Feb 08 2012

A053507 a(n) = binomial(n-1,2)*n^(n-3).

Original entry on oeis.org

0, 0, 1, 12, 150, 2160, 36015, 688128, 14880348, 360000000, 9646149645, 283787919360, 9098660462034, 315866083233792, 11806916748046875, 472877960873902080, 20205339187128111480, 917543123840934346752, 44131536275846038655193
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

Number of connected unicyclic simple graphs on n labeled nodes such that the unique cycle has length 3. - Len Smiley, Nov 27 2001
Each simple graph (of this type) corresponds to exactly two 'functional digraphs' counted by A065513.

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.

Crossrefs

Equals 2*A065513. A diagonal of A081130.

Programs

  • GAP
    List([1..20], n-> Binomial(n-1,2)*n^(n-3)); # G. C. Greubel, May 15 2019
  • Magma
    [Binomial(n-1,2)*n^(n-3):n in [1..20]]; // Vincenzo Librandi, Sep 22 2011
    
  • Magma
    [Binomial(n-1,2)*n^(n-3): n in [1..20]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Rest[Range[0, nn]! CoefficientList[Series[t^3/3!, {x, 0, nn}], x]] (* Geoffrey Critzer, Jan 22 2012 *)
    Table[Binomial[n-1,2]n^(n-3),{n,20}] (* Harvey P. Dale, Sep 24 2019 *)
  • PARI
    vector(20, n, binomial(n-1,2)*n^(n-3)) \\ G. C. Greubel, Jan 18 2017
    
  • Sage
    [binomial(n-1,2)*n^(n-3) for n in (1..20)] # G. C. Greubel, May 15 2019
    

Formula

E.g.f.: -LambertW(-x)^3/3!. - Vladeta Jovovic, Apr 07 2001

A081132 a(n) = (n+1)^n*binomial(n+2,2).

Original entry on oeis.org

1, 6, 54, 640, 9375, 163296, 3294172, 75497472, 1937102445, 55000000000, 1711870023666, 57954652913664, 2120125746145771, 83340051191685120, 3503151123046875000, 156797324626531188736, 7445162356977030877593
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

A diagonal of A081130.
a(n) is the sum of all the fixed points in the set of endofunctions on {1,2,...,n+1}, i.e., the functions f:{1,2,...,n+1} -> {1,2,...,n+1}. - Geoffrey Critzer, Sep 17 2011

Examples

			a(1) = 6 because there are four functions from {1,2} into {1,2}: (1*,1) (1*,2*) (2,1) (2,2*) and the fixed points (marked *) sum to 6.
		

Crossrefs

Sequences of the form (n+m)^n*binomial(n+2,2): A081133 (m=0), this sequence (m=1), A081131 (m=2), A053507 (m=3), A081196 (m=4).

Programs

  • Magma
    [((n+1)^n*Binomial(n+2,2)): n in [0..20]]; // Vincenzo Librandi, Sep 21 2011
    
  • Maple
    seq((n+1)^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
  • Mathematica
    Table[n^n*(n+1)/2,{n,20}]
  • Sage
    [(n+1)^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021

Formula

a(n) = (n+1)^n*binomial(n+2,2).

A368849 Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k).

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 18, 6, 0, 0, 192, 72, 48, 0, 0, 2500, 960, 720, 540, 0, 0, 38880, 15000, 11520, 9720, 7680, 0, 0, 705894, 272160, 210000, 181440, 161280, 131250, 0, 0, 14680064, 5647152, 4354560, 3780000, 3440640, 3150000, 2612736, 0
Offset: 0

Views

Author

Peter Luschny, Jan 11 2024

Keywords

Comments

A motivation for this triangle was to provide an alternative sum representation for A001864(n) = n! * Sum_{k=0..n-2} n^k/k!. See formula 3 and formula 15 in Riordan and Sloane.

Examples

			Triangle starts:
  [0] [0]
  [1] [0,        0]
  [2] [0,        2,       0]
  [3] [0,       18,       6,       0]
  [4] [0,      192,      72,      48,      0]
  [5] [0,     2500,     960,     720,     540,       0]
  [6] [0,    38880,   15000,   11520,    9720,    7680,       0]
  [7] [0,   705894,  272160,  210000,  181440,  161280,  131250,       0]
  [8] [0, 14680064, 5647152, 4354560, 3780000, 3440640, 3150000, 2612736, 0]
		

Crossrefs

T(n, 1) = A066274(n) for n >= 1.
T(n, 1)/(n - 1) = A000169(n) for n >= 2.
T(n, n - 1) = 2*A081133(n) for n >= 1.
Sum_{k=0..n} T(n, k) = A001864(n).
(Sum_{k=0..n} T(n, k)) / n = A000435(n) for n >= 1.
(Sum_{k=0..n} T(n, k)) * n / 2 = A262973(n) for n >= 1.
(Sum_{k=2..n} T(n, k)) / (2*n) = A057500(n) for n >= 1.
T(n, 1)/(n - 1) + (Sum_{k=2..n} T(n, k)) / (2*n) = A368951(n) for n >= 2.
Sum_{k=0..n} (-1)^(k-1) * T(n, k) = A368981(n).

Programs

  • Mathematica
    A368849[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k);
    Table[A368849[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2024 *)
  • SageMath
    def T(n, k):
        return binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k)
    for n in range(0, 9): print([n], [T(n, k) for k in range(n + 1)])

A081196 a(n) = (n+4)^n*binomial(n+2,2).

Original entry on oeis.org

1, 15, 216, 3430, 61440, 1240029, 28000000, 701538156, 19349176320, 583247465515, 19090807228416, 674680957031250, 25614222880669696, 1039980693455123385, 44977604109849722880, 2064633276062972568664
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Diagonal of A081130.

Crossrefs

Sequences of the form (n+m)^n*binomial(n+2,2): A081133 (m=0), A081132 (m=1), A081131 (m=2), A053507 (m=3), this sequence (m=4).

Programs

  • Magma
    [(n+4)^n*Binomial(n+2,2): n in [0..20]]; // Vincenzo Librandi, Aug 07 2013
    
  • Maple
    seq((n+4)^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
  • Mathematica
    Table[(n+4)^n Binomial[n+2, 2], {n, 0, 30}] (* Vincenzo Librandi, Aug 07 2013 *)
  • Sage
    [(n+4)^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021

Formula

a(n) = (n+4)^n*binomial(n+2,2).

A368982 Triangle read by rows: T(n, k) = binomial(n, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k) / 2.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 9, 3, 0, 0, 96, 36, 24, 0, 0, 1250, 480, 360, 270, 0, 0, 19440, 7500, 5760, 4860, 3840, 0, 0, 352947, 136080, 105000, 90720, 80640, 65625, 0, 0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0
Offset: 0

Views

Author

Peter Luschny, Jan 11 2024

Keywords

Examples

			Triangle starts:
  [0] [0]
  [1] [0,       0]
  [2] [0,       1,       0]
  [3] [0,       9,       3,       0]
  [4] [0,      96,      36,      24,       0]
  [5] [0,    1250,     480,     360,     270,       0]
  [6] [0,   19440,    7500,    5760,    4860,    3840,       0]
  [7] [0,  352947,  136080,  105000,   90720,   80640,   65625,       0]
  [8] [0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0]
		

Crossrefs

A368849, A369016 and this sequence are alternative sum representation for A001864 with different normalizations.
T(n, k) = A368849(n, k) / 2.
T(n, 1) = A081131(n) for n >= 1.
T(n, n - 1) = A081133(n - 2) for n >= 2.
Sum_{k=0..n} T(n, k) = A036276(n - 1) for n >= 1.
Sum_{k=0..n} (-1)^(k+1)*T(n, k) = A368981(n) / 2 for n >= 0.

Programs

  • Maple
    T := (n, k) -> binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)/2:
    seq(seq(T(n, k), k = 0..n), n=0..9);
  • Mathematica
    A368982[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k)/2; Table[A368982[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
  • SageMath
    def T(n, k): return binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)//2
    for n in range(0, 9): print([T(n, k) for k in range(n + 1)])

Formula

Showing 1-6 of 6 results.