A081131
a(n) = n^(n-2) * binomial(n,2).
Original entry on oeis.org
0, 0, 1, 9, 96, 1250, 19440, 352947, 7340032, 172186884, 4500000000, 129687123005, 4086546038784, 139788510734886, 5159146026151936, 204350482177734375, 8646911284551352320, 389289535005334947848, 18580248257778920521728, 937146152681201173795569
Offset: 0
-
[n lt 2 select 0 else n^(n-2)*Binomial(n,2): n in [0..20]]; // G. C. Greubel, May 18 2021
-
Join[{0},Table[n^(n-2) Binomial[n, 2], {n, 1, 20}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
-
[0 if (n<2) else n^(n-2)*binomial(n,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A053507
a(n) = binomial(n-1,2)*n^(n-3).
Original entry on oeis.org
0, 0, 1, 12, 150, 2160, 36015, 688128, 14880348, 360000000, 9646149645, 283787919360, 9098660462034, 315866083233792, 11806916748046875, 472877960873902080, 20205339187128111480, 917543123840934346752, 44131536275846038655193
Offset: 1
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.
-
List([1..20], n-> Binomial(n-1,2)*n^(n-3)); # G. C. Greubel, May 15 2019
-
[Binomial(n-1,2)*n^(n-3):n in [1..20]]; // Vincenzo Librandi, Sep 22 2011
-
[Binomial(n-1,2)*n^(n-3): n in [1..20]]; // G. C. Greubel, May 15 2019
-
nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Rest[Range[0, nn]! CoefficientList[Series[t^3/3!, {x, 0, nn}], x]] (* Geoffrey Critzer, Jan 22 2012 *)
Table[Binomial[n-1,2]n^(n-3),{n,20}] (* Harvey P. Dale, Sep 24 2019 *)
-
vector(20, n, binomial(n-1,2)*n^(n-3)) \\ G. C. Greubel, Jan 18 2017
-
[binomial(n-1,2)*n^(n-3) for n in (1..20)] # G. C. Greubel, May 15 2019
A081132
a(n) = (n+1)^n*binomial(n+2,2).
Original entry on oeis.org
1, 6, 54, 640, 9375, 163296, 3294172, 75497472, 1937102445, 55000000000, 1711870023666, 57954652913664, 2120125746145771, 83340051191685120, 3503151123046875000, 156797324626531188736, 7445162356977030877593
Offset: 0
a(1) = 6 because there are four functions from {1,2} into {1,2}: (1*,1) (1*,2*) (2,1) (2,2*) and the fixed points (marked *) sum to 6.
-
[((n+1)^n*Binomial(n+2,2)): n in [0..20]]; // Vincenzo Librandi, Sep 21 2011
-
seq((n+1)^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
-
Table[n^n*(n+1)/2,{n,20}]
-
[(n+1)^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A368849
Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k).
Original entry on oeis.org
0, 0, 0, 0, 2, 0, 0, 18, 6, 0, 0, 192, 72, 48, 0, 0, 2500, 960, 720, 540, 0, 0, 38880, 15000, 11520, 9720, 7680, 0, 0, 705894, 272160, 210000, 181440, 161280, 131250, 0, 0, 14680064, 5647152, 4354560, 3780000, 3440640, 3150000, 2612736, 0
Offset: 0
Triangle starts:
[0] [0]
[1] [0, 0]
[2] [0, 2, 0]
[3] [0, 18, 6, 0]
[4] [0, 192, 72, 48, 0]
[5] [0, 2500, 960, 720, 540, 0]
[6] [0, 38880, 15000, 11520, 9720, 7680, 0]
[7] [0, 705894, 272160, 210000, 181440, 161280, 131250, 0]
[8] [0, 14680064, 5647152, 4354560, 3780000, 3440640, 3150000, 2612736, 0]
T(n, 1)/(n - 1) =
A000169(n) for n >= 2.
T(n, n - 1) = 2*
A081133(n) for n >= 1.
(Sum_{k=0..n} T(n, k)) / n =
A000435(n) for n >= 1.
(Sum_{k=0..n} T(n, k)) * n / 2 =
A262973(n) for n >= 1.
(Sum_{k=2..n} T(n, k)) / (2*n) =
A057500(n) for n >= 1.
T(n, 1)/(n - 1) + (Sum_{k=2..n} T(n, k)) / (2*n) =
A368951(n) for n >= 2.
Sum_{k=0..n} (-1)^(k-1) * T(n, k) =
A368981(n).
-
A368849[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k);
Table[A368849[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2024 *)
-
def T(n, k):
return binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k)
for n in range(0, 9): print([n], [T(n, k) for k in range(n + 1)])
A081196
a(n) = (n+4)^n*binomial(n+2,2).
Original entry on oeis.org
1, 15, 216, 3430, 61440, 1240029, 28000000, 701538156, 19349176320, 583247465515, 19090807228416, 674680957031250, 25614222880669696, 1039980693455123385, 44977604109849722880, 2064633276062972568664
Offset: 0
-
[(n+4)^n*Binomial(n+2,2): n in [0..20]]; // Vincenzo Librandi, Aug 07 2013
-
seq((n+4)^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
-
Table[(n+4)^n Binomial[n+2, 2], {n, 0, 30}] (* Vincenzo Librandi, Aug 07 2013 *)
-
[(n+4)^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A368982
Triangle read by rows: T(n, k) = binomial(n, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k) / 2.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 9, 3, 0, 0, 96, 36, 24, 0, 0, 1250, 480, 360, 270, 0, 0, 19440, 7500, 5760, 4860, 3840, 0, 0, 352947, 136080, 105000, 90720, 80640, 65625, 0, 0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0
Offset: 0
Triangle starts:
[0] [0]
[1] [0, 0]
[2] [0, 1, 0]
[3] [0, 9, 3, 0]
[4] [0, 96, 36, 24, 0]
[5] [0, 1250, 480, 360, 270, 0]
[6] [0, 19440, 7500, 5760, 4860, 3840, 0]
[7] [0, 352947, 136080, 105000, 90720, 80640, 65625, 0]
[8] [0, 7340032, 2823576, 2177280, 1890000, 1720320, 1575000, 1306368, 0]
A368849,
A369016 and this sequence are alternative sum representation for
A001864 with different normalizations.
T(n, n - 1) =
A081133(n - 2) for n >= 2.
Sum_{k=0..n} T(n, k) =
A036276(n - 1) for n >= 1.
Sum_{k=0..n} (-1)^(k+1)*T(n, k) =
A368981(n) / 2 for n >= 0.
-
T := (n, k) -> binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)/2:
seq(seq(T(n, k), k = 0..n), n=0..9);
-
A368982[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k)/2; Table[A368982[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 28 2024 *)
-
def T(n, k): return binomial(n, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k)//2
for n in range(0, 9): print([T(n, k) for k in range(n + 1)])
Showing 1-6 of 6 results.
Comments