A081131
a(n) = n^(n-2) * binomial(n,2).
Original entry on oeis.org
0, 0, 1, 9, 96, 1250, 19440, 352947, 7340032, 172186884, 4500000000, 129687123005, 4086546038784, 139788510734886, 5159146026151936, 204350482177734375, 8646911284551352320, 389289535005334947848, 18580248257778920521728, 937146152681201173795569
Offset: 0
-
[n lt 2 select 0 else n^(n-2)*Binomial(n,2): n in [0..20]]; // G. C. Greubel, May 18 2021
-
Join[{0},Table[n^(n-2) Binomial[n, 2], {n, 1, 20}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
-
[0 if (n<2) else n^(n-2)*binomial(n,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A081132
a(n) = (n+1)^n*binomial(n+2,2).
Original entry on oeis.org
1, 6, 54, 640, 9375, 163296, 3294172, 75497472, 1937102445, 55000000000, 1711870023666, 57954652913664, 2120125746145771, 83340051191685120, 3503151123046875000, 156797324626531188736, 7445162356977030877593
Offset: 0
a(1) = 6 because there are four functions from {1,2} into {1,2}: (1*,1) (1*,2*) (2,1) (2,2*) and the fixed points (marked *) sum to 6.
-
[((n+1)^n*Binomial(n+2,2)): n in [0..20]]; // Vincenzo Librandi, Sep 21 2011
-
seq((n+1)^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
-
Table[n^n*(n+1)/2,{n,20}]
-
[(n+1)^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A081133
a(n) = n^n*binomial(n+2, 2).
Original entry on oeis.org
1, 3, 24, 270, 3840, 65625, 1306368, 29647548, 754974720, 21308126895, 660000000000, 22254310307658, 811365140791296, 31801886192186565, 1333440819066961920, 59553569091796875000, 2822351843277561397248
Offset: 0
-
[(n^n*Binomial(n+2,2)): n in [0..20]]; // Vincenzo Librandi, Sep 22 2011
-
seq(n^n*binomial(n+2,2), n=0..20); # G. C. Greubel, May 18 2021
-
Join[{1},Table[n^n Binomial[n+2,2],{n,20}]] (* Harvey P. Dale, Dec 27 2011 *)
-
[n^n*binomial(n+2,2) for n in (0..20)] # G. C. Greubel, May 18 2021
Showing 1-3 of 3 results.
Comments