cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081141 11th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 33, 726, 13310, 219615, 3382071, 49603708, 701538156, 9646149645, 129687123005, 1711870023666, 22254310307658, 285596982281611, 3624884775112755, 45569980029988920, 568105751040528536
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A001020 (powers of 11).

Crossrefs

Cf. A001020.
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), this sequence (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [11^(n-2)*Binomial(n, 2): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq((11)^(n-2)*binomial(n,2), n=0..30); # G. C. Greubel, May 13 2021
  • Mathematica
    LinearRecurrence[{33,-363,1331},{0,0,1},30] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    vector(20, n, n--; 11^(n-2)*binomial(n, 2)) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [11^(n-2)*binomial(n, 2) for n in range(20)] # G. C. Greubel, Nov 23 2018

Formula

a(n) = 33*a(n-1) - 363*a(n-2) + 1331*a(n-3), a(0) = a(1) = 0, a(2) = 1.
a(n) = 11^(n-2)*binomial(n, 2).
G.f.: x^2/(1 - 11*x)^3.
E.g.f.: (1/2)*exp(11*x)*x^2. - Franck Maminirina Ramaharo, Nov 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 22 - 220*log(11/10).
Sum_{n>=2} (-1)^n/a(n) = 264*log(12/11) - 22. (End)