cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081144 Starting at 1, four-fold convolution of A000400 (powers of 6).

Original entry on oeis.org

0, 0, 0, 1, 24, 360, 4320, 45360, 435456, 3919104, 33592320, 277136640, 2217093120, 17293326336, 132058128384, 990435962880, 7313988648960, 53287631585280, 383670947414016, 2733655500324864, 19296391766999040, 135074742368993280
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

With a different offset, number of n-permutations (n=4) of 7 objects: t, u, v, w, z, x, y with repetition allowed, containing exactly three u's. Example: a(4)=24 because we have uuut, uutu, utuu, tuuu, uuuv, uuvu, uvuu, vuuu, uuuw, uuwu, uwuu, wuuu, uuuz, uuzu, uzuu, zuuu, uuux, uuxu, uxuu, xuuu, uuuy, uuyu, uyuu, yuuu. - Zerinvary Lajos, Jun 03 2008

Crossrefs

Programs

  • GAP
    List([-3..18],n->Binomial(n+3,3)*6^n); # Muniru A Asiru, Feb 19 2018
  • Magma
    [6^n* Binomial(n+3, 3): n in [-3..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq(seq(binomial(i+2, j)*6^(i-1), j =i-1), i=-2..19); # Zerinvary Lajos, Dec 30 2007
    seq(binomial(n+3,3)*6^n,n=-3..18); # Zerinvary Lajos, Jun 03 2008
  • Sage
    [lucas_number2(n, 6, 0)*binomial(n,3)/6^3 for n in range(0, 22)] # Zerinvary Lajos, Mar 13 2009
    

Formula

G.f.: x^3/(1 - 6*x)^4.
a(n) = 24*a(n-1) - 216*a(n-2) + 864*a(n-3) - 1296*a(n-4) for n > 3, a(0) = a(1) = a(2) = 0, a(3) = 1.
a(n) = 6^(n - 3)*binomial(n, 3).
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=3} 1/a(n) = 450*log(6/5) - 81.
Sum_{n>=3} (-1)^(n+1)/a(n) = 882*log(7/6) - 135. (End)