A128964
a(n) = (n^3-n)*6^n.
Original entry on oeis.org
0, 216, 5184, 77760, 933120, 9797760, 94058496, 846526464, 7255941120, 59861514240, 478892113920, 3735358488576, 28524555730944, 213934167982080, 1579821548175360, 11510128422420480, 82872924641427456, 590469588070170624, 4168020621671792640, 29176144351702548480
Offset: 1
-
[(n^3-n)*6^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
-
I:=[0, 216, 5184, 77760]; [n le 4 select I[n] else 24*Self(n-1) -216*Self(n-2) +864*Self(n-3) -1296*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
-
CoefficientList[Series[216 x/(1 - 6 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2013 *)
A081143
5th binomial transform of (0,0,0,1,0,0,0,0,......).
Original entry on oeis.org
0, 0, 0, 1, 20, 250, 2500, 21875, 175000, 1312500, 9375000, 64453125, 429687500, 2792968750, 17773437500, 111083984375, 683593750000, 4150390625000, 24902343750000, 147857666015625, 869750976562500, 5073547363281250
Offset: 0
-
[5^(n-3) * Binomial(n, 3): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
-
seq(binomial(n,3)*5^(n-3), n=0..25); # Zerinvary Lajos, Jun 03 2008
-
CoefficientList[Series[x^3/(1-5x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{20,-150,500,-625}, {0,0,0,1}, 30] (* Harvey P. Dale, Dec 24 2015 *)
-
vector(31, n, my(m=n-1); 5^(m-3)*binomial(m,3)) \\ G. C. Greubel, Mar 05 2020
-
[lucas_number2(n, 5, 0)*binomial(n,3)/5^3 for n in range(0, 22)] # Zerinvary Lajos, Mar 12 2009
A172501
a(n) = binomial(n+8,8)*6^n.
Original entry on oeis.org
1, 54, 1620, 35640, 641520, 10007712, 140107968, 1801388160, 21616657920, 244988789760, 2645878929408, 27420927086592, 274209270865920, 2657720625315840, 25058508752977920, 230538280527396864, 2074844524746571776, 18307451688940339200, 158664581304149606400
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (54,-1296,18144,-163296,979776,-3919104,10077696,-15116544,10077696).
-
[6^n* Binomial(n+8, 8): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
Table[Binomial[n + 8, 8]*6^n, {n, 0, 20}]
-
Vec(1 / (1 - 6*x)^9 + O(x^30)) \\ Colin Barker, Jul 24 2017
A173123
a(n) = binomial(n+9,9)*6^n.
Original entry on oeis.org
1, 60, 1980, 47520, 926640, 15567552, 233513280, 3202467840, 40831464960, 489977579520, 5585744406528, 60935393525760, 639821632020480, 6496650417438720, 64038411257610240, 614768748073058304, 5763457013184921600, 52888193768049868800, 475993743912448819200
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (60,-1620,25920,-272160,1959552,-9797760,33592320,-75582720,100776960,-60466176).
-
[6^n* Binomial(n+9, 9): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
Table[Binomial[n + 9, 9]*6^n, {n, 0, 20}]
A173124
a(n) = binomial(n+10,10)*6^n.
Original entry on oeis.org
1, 66, 2376, 61776, 1297296, 23351328, 373621248, 5444195328, 73496636928, 930957401088, 11171488813056, 127964326404096, 1407607590445056, 14942295960109056, 153692187018264576, 1536921870182645760, 14984988234280796160, 142798123173734645760, 1332782482954856693760
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (66,-1980,35640,-427680,3592512,-21555072,92378880,-277136640,554273280,-665127936,362797056).
-
[6^n* Binomial(n+10, 10): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
Table[Binomial[n + 10, 10]*6^n, {n, 0, 20}]
A304255
Triangle read by rows: T(0,0) = 1; T(n,k) = 6*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 6, 36, 1, 216, 12, 1296, 108, 1, 7776, 864, 18, 46656, 6480, 216, 1, 279936, 46656, 2160, 24, 1679616, 326592, 19440, 360, 1, 10077696, 2239488, 163296, 4320, 30, 60466176, 15116544, 1306368, 45360, 540, 1, 362797056, 100776960, 10077696, 435456, 7560, 36
Offset: 0
Triangle begins:
1;
6;
36, 1;
216, 12;
1296, 108, 1;
7776, 864, 18;
46656, 6480, 216, 1;
279936, 46656, 2160, 24;
1679616, 326592, 19440, 360, 1;
10077696, 2239488, 163296, 4320, 30;
60466176, 15116544, 1306368, 45360, 540, 1;
362797056, 100776960, 10077696, 435456, 7560, 36;
2176782336, 665127936, 75582720, 3919104, 90720, 756, 1;
13060694016, 4353564672, 554273280, 33592320, 979776, 12096, 42;
78364164096, 28298170368, 3990767616, 277136640, 9797760, 163296, 1008, 1;
470184984576, 182849716224, 28298170368, 2217093120, 92378880, 1959552, 18144, 48;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 94.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 6 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 6*T(n-1, k) + T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 26 2018
A362353
Triangle read by rows: T(n,k) = (-1)^(n-k)*binomial(n, k)*(k+3)^n, for n >= 0, and k = 0,1, ..., n. Coefficients of certain Sidi polynomials.
Original entry on oeis.org
1, -3, 4, 9, -32, 25, -27, 192, -375, 216, 81, -1024, 3750, -5184, 2401, -243, 5120, -31250, 77760, -84035, 32768, 729, -24576, 234375, -933120, 1764735, -1572864, 531441, -2187, 114688, -1640625, 9797760, -28824005, 44040192, -33480783, 10000000, 6561, -524288, 10937500, -94058496, 403536070, -939524096, 1205308188, -800000000, 214358881
Offset: 0
The triangle T begins:
n\k 0 1 2 3 4 5 6 7
0: 1
1: -3 4
2: 9 -32 25
3: -27 192 -375 216
4: 81 -1024 3750 -5184 2401
5: -243 5120 -31250 77760 -84035 32768
6: 729 -24576 234375 -933120 1764735 -1572864 531441
7: -2187 114688 -1640625 9797760 -28824005 44040192 -33480783 10000000
...
n = 8: 6561 -524288 10937500 -94058496 403536070 -939524096 1205308188 -800000000 2143588,
n = 9: -19683 2359296 -70312500 846526464 -5084554482 16911433728 -32543321076 36000000000 -21221529219 5159780352.
Columns k = 0..6 involve (see above):
A002697,
A007334,
A018215,
A081135,
A081144,
A128964,
A137352,
A139641,
A141413,
A173155,
A173191.
Showing 1-7 of 7 results.
Comments