A081144
Starting at 1, four-fold convolution of A000400 (powers of 6).
Original entry on oeis.org
0, 0, 0, 1, 24, 360, 4320, 45360, 435456, 3919104, 33592320, 277136640, 2217093120, 17293326336, 132058128384, 990435962880, 7313988648960, 53287631585280, 383670947414016, 2733655500324864, 19296391766999040, 135074742368993280
Offset: 0
-
List([-3..18],n->Binomial(n+3,3)*6^n); # Muniru A Asiru, Feb 19 2018
-
[6^n* Binomial(n+3, 3): n in [-3..20]]; // Vincenzo Librandi, Oct 16 2011
-
seq(seq(binomial(i+2, j)*6^(i-1), j =i-1), i=-2..19); # Zerinvary Lajos, Dec 30 2007
seq(binomial(n+3,3)*6^n,n=-3..18); # Zerinvary Lajos, Jun 03 2008
-
[lucas_number2(n, 6, 0)*binomial(n,3)/6^3 for n in range(0, 22)] # Zerinvary Lajos, Mar 13 2009
A128963
a(n) = (n^3 - n)*5^n.
Original entry on oeis.org
0, 150, 3000, 37500, 375000, 3281250, 26250000, 196875000, 1406250000, 9667968750, 64453125000, 418945312500, 2666015625000, 16662597656250, 102539062500000, 622558593750000, 3735351562500000, 22178649902343750, 130462646484375000, 761032104492187500
Offset: 1
-
[(n^3-n)*5^n: n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
-
Table[(n^3-n)5^n,{n,20}] (* or *) LinearRecurrence[{20,-150,500,-625},{0,150,3000,37500},20] (* Harvey P. Dale, Jul 22 2012 *)
CoefficientList[Series[150 x/(1 - 5 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 12 2013 *)
A038243
Triangle whose (i,j)-th entry is 5^(i-j)*binomial(i,j).
Original entry on oeis.org
1, 5, 1, 25, 10, 1, 125, 75, 15, 1, 625, 500, 150, 20, 1, 3125, 3125, 1250, 250, 25, 1, 15625, 18750, 9375, 2500, 375, 30, 1, 78125, 109375, 65625, 21875, 4375, 525, 35, 1, 390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1, 1953125, 3515625, 2812500, 1312500, 393750, 78750, 10500, 900, 45, 1
Offset: 0
Triangle begins as:
1;
5, 1;
25, 10, 1;
125, 75, 15, 1;
625, 500, 150, 20, 1;
3125, 3125, 1250, 250, 25, 1;
15625, 18750, 9375, 2500, 375, 30, 1;
78125, 109375, 65625, 21875, 4375, 525, 35, 1;
390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1;
Sequences of the form q^(n-k)*binomial(n, k):
A007318 (q=1),
A038207 (q=2),
A027465 (q=3),
A038231 (q=4), this sequence (q=5),
A038255 (q=6),
A027466 (q=7),
A038279 (q=8),
A038291 (q=9),
A038303 (q=10),
A038315 (q=11),
A038327 (q=12),
A133371 (q=13),
A147716 (q=14),
A027467 (q=15).
-
[5^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 12 2021
-
for i from 0 to 8 do seq(binomial(i, j)*5^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> 5^(n-1)); # Peter Luschny, Oct 09 2022
-
With[{q=5}, Table[q^(n-k)*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, May 12 2021 *)
-
flatten([[5^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 12 2021
A218016
Triangle, read by rows, where T(n,k) = k!*C(n, k)*5^(n-k) for n>=0, k=0..n.
Original entry on oeis.org
1, 5, 1, 25, 10, 2, 125, 75, 30, 6, 625, 500, 300, 120, 24, 3125, 3125, 2500, 1500, 600, 120, 15625, 18750, 18750, 15000, 9000, 3600, 720, 78125, 109375, 131250, 131250, 105000, 63000, 25200, 5040, 390625, 625000, 875000, 1050000, 1050000, 840000, 504000, 201600, 40320
Offset: 0
Triangle begins:
1;
5, 1;
25, 10, 2;
125, 75, 30, 6;
625, 500, 300, 120, 24;
3125, 3125, 2500, 1500, 600, 120;
15625, 18750, 18750, 15000, 9000, 3600, 720;
78125, 109375, 131250, 131250, 105000, 63000, 25200, 5040;
390625, 625000, 875000, 1050000, 1050000, 840000, 504000, 201600, 40320; etc.
-
[Factorial(n)/Factorial(n-k)*5^(n-k): k in [0..n], n in [0..10]];
-
Flatten[Table[n!/(n-k)!*5^(n-k), {n, 0, 10}, {k, 0, n}]]
A305837
Triangle read by rows: T(0,0) = 1; T(n,k) = 5*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 5, 25, 1, 125, 10, 625, 75, 1, 3125, 500, 15, 15625, 3125, 150, 1, 78125, 18750, 1250, 20, 390625, 109375, 9375, 250, 1, 1953125, 625000, 65625, 2500, 25, 9765625, 3515625, 437500, 21875, 375, 1, 48828125, 19531250, 2812500, 175000, 4375, 30, 244140625, 107421875, 17578125, 1312500, 43750, 525, 1
Offset: 0
Triangle begins:
1;
5;
25, 1;
125, 10;
625, 75, 1;
3125, 500, 15;
15625, 3125, 150, 1;
78125, 18750, 1250, 20;
390625, 109375, 9375, 250, 1;
1953125, 625000, 65625, 2500, 25;
9765625, 3515625, 437500, 21875, 375, 1;
48828125, 19531250, 2812500, 175000, 4375, 30;
244140625, 107421875, 17578125, 1312500, 43750, 525, 1;
1220703125, 585937500, 107421875, 9375000, 393750, 7000, 35;
6103515625, 3173828125, 644531250, 64453125, 3281250, 78750, 700, 1;
30517578125, 17089843750, 3808593750, 429687500, 25781250, 787500, 10500, 40;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 92, 380, 382.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 5 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten
A129005
a(n) = (n^3 + n^2)*5^n.
Original entry on oeis.org
0, 10, 300, 4500, 50000, 468750, 3937500, 30625000, 225000000, 1582031250, 10742187500, 70898437500, 457031250000, 2888183593750, 17944335937500, 109863281250000, 664062500000000, 3968811035156250, 23483276367187500
Offset: 0
-
[(n^3+n^2)*5^n: n in [0..25]]; // Vincenzo Librandi, Feb 12 2013
-
I:=[0,10,300,4500]; [n le 4 select I[n] else 20*Self(n-1)-150*Self(n-2)+500*Self(n-3)-625*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
-
CoefficientList[Series[10 x (1 + 10 x)/(1 - 5 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 12 2013 *)
Table[(n^3+n^2)5^n,{n,0,30}] (* or *) LinearRecurrence[{20,-150,500,-625},{0,10,300,4500},30] (* Harvey P. Dale, May 15 2022 *)
-
A129005(n)=5^n*(1+n)*n^2 \\ - M. F. Hasler, Feb 12 2013
A173113
a(n) = binomial(n + 10, 10) * 5^n.
Original entry on oeis.org
1, 55, 1650, 35750, 625625, 9384375, 125125000, 1519375000, 17092968750, 180425781250, 1804257812500, 17222460937500, 157872558593750, 1396564941406250, 11970556640625000, 99754638671875000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (55,-1375,20625,-206250,1443750,-7218750,25781250,-64453125,107421875,-107421875,48828125).
-
[5^n*Binomial(n+10, 10): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
Table[Binomial[n + 10, 10]*5^n, {n, 0, 20}]
Showing 1-7 of 7 results.
Comments