cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081183 6th binomial transform of (0,1,0,2,0,4,0,8,0,16,...).

Original entry on oeis.org

0, 1, 12, 110, 912, 7204, 55440, 420344, 3159168, 23618320, 176008128, 1309074656, 9724619520, 72186895936, 535605687552, 3972913788800, 29464372088832, 218493396246784, 1620132103941120, 12012809774902784, 89069225764835328
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Crossrefs

Binomial transform of A081182.

Programs

  • Magma
    [n le 2 select n-1 else 12*Self(n-1)-34*Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Aug 07 2013
  • Mathematica
    CoefficientList[Series[x / (1 - 12 x + 34 x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *)
    LinearRecurrence[{12,-34},{0,1},30] (* Harvey P. Dale, Jul 31 2025 *)
  • Sage
    [lucas_number1(n,12,34) for n in range(0, 21)] # Zerinvary Lajos, Apr 27 2009
    

Formula

a(n) = 12*a(n-1) - 34*a(n-2) with n > 1, a(0)=0, a(1)=1.
G.f.: x/(1 - 12*x + 34*x^2).
a(n) = ((6 + sqrt(2))^n - (6 - sqrt(2))^n)/(2*sqrt(2)).
a(n) = Sum_{k=0..n} C(n,2k+1)*2^k*6^(n-2k-1).
E.g.f.: exp(6*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017