cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081184 7th binomial transform of (0,1,0,2,0,4,0,8,0,16,...).

Original entry on oeis.org

0, 1, 14, 149, 1428, 12989, 114730, 995737, 8548008, 72872473, 618458246, 5233409213, 44200191420, 372832446869, 3142245259426, 26468308629121, 222870793614672, 1876180605036721, 15791601170624510, 132901927952017253
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Crossrefs

Binomial transform of A081183.
Cf. A081185.

Programs

  • Magma
    [n le 2 select n-1 else 14*Self(n-1)-47*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 07 2013
    
  • Mathematica
    CoefficientList[Series[x/(1-14*x+47*x^2), {x,0,30}], x] (* Vincenzo Librandi, Aug 07 2013 *)
    LinearRecurrence[{14,-47},{0,1},30] (* Harvey P. Dale, Nov 12 2013 *)
  • SageMath
    A081184=BinaryRecurrenceSequence(14,-47,0,1)
    [A081184(n) for n in range(31)] # G. C. Greubel, Jan 14 2024

Formula

a(n) = 14*a(n-1) - 47*a(n-2), a(0)=0, a(1)=1.
G.f.: x/(1 - 14*x + 47*x^2). [Corrected by Georg Fischer, May 15 2019]
a(n) = ((7 + sqrt(2))^n - (7 - sqrt(2))^n)/(2*sqrt(2)).
a(n) = Sum_{k=0..n} C(n,2*k+1) * 2^k * 7^(n-2*k-1).
E.g.f.: exp(7*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017