A081201 7th binomial transform of (0,1,0,1,0,1,....), A000035.
0, 1, 14, 148, 1400, 12496, 107744, 908608, 7548800, 62070016, 506637824, 4113568768, 33271347200, 268347559936, 2159841173504, 17357093552128, 139326933401600, 1117436577120256, 8956419276406784, 71752914167922688, 574632673083392000, 4600717543107198976
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (14,-48).
Programs
-
Magma
[(8^n-6^n)/2: n in [0..30]]; // Vincenzo Librandi, Aug 07 2013
-
Mathematica
CoefficientList[Series[x/((1 - 6 x) (1 - 8 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 07 2013 *) LinearRecurrence[{14,-48},{0,1},30] (* Harvey P. Dale, Oct 24 2022 *)
-
SageMath
A081201=BinaryRecurrenceSequence(14,-48,0,1) [A081201(n) for n in range(41)] # G. C. Greubel, Nov 10 2024
Formula
a(n) = 14*a(n-1) - 48*a(n-2) with n>1, a(0)=0, a(1)=1.
G.f.: x/((1-6*x)*(1-8*x)).
a(n) = (1/2)*(8^n - 6^n).
E.g.f.: exp(7*x)*sinh(x). - G. C. Greubel, Nov 10 2024
Extensions
Name clarified by Pontus von Brömssen, Nov 11 2020
Comments