cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A081336 a(n) = (7^n + 3^n)/2.

Original entry on oeis.org

1, 5, 29, 185, 1241, 8525, 59189, 412865, 2885681, 20186645, 141267149, 988751945, 6920909321, 48445302365, 339113927909, 2373787929425, 16616486808161, 116315321563685, 814206992665469, 5699448173817305, 39896134892198201
Offset: 0

Views

Author

Paul Barry, Mar 18 2003

Keywords

Comments

Binomial transform of A081336.
5th binomial transform of (1,0,4,0,16,0,64,...).

Crossrefs

Programs

Formula

a(n) = 10*a(n-1) - 21*a(n-2), a(0)=1, a(1)=5.
G.f.: (1-5*x)/((1-3*x)*(1-7*x)).
E.g.f.: exp(5*x) * cosh(2*x).
a(n) = A074608(n) / 2. - Michel Marcus, Oct 07 2015
a(n) = Sum_{k=0..n} A027907(n,2k)*4^k . - J. Conrad, Aug 24 2016

A081338 a(n) = (9^n + 5^n)/2.

Original entry on oeis.org

1, 7, 53, 427, 3593, 31087, 273533, 2430547, 21718673, 194686807, 1748275013, 15714943867, 141336838553, 1271543265727, 11441447985293, 102960824836387, 926586388371233, 8338972319559847, 75049224997132373, 675435395579660107
Offset: 0

Views

Author

Paul Barry, Mar 18 2003

Keywords

Comments

Binomial transform of A081337. 7th binomial transform of (1,0,4,0,16,0,64,....).

Programs

  • Magma
    [(9^n+5^n)/2: n in [0..25]]; // Vincenzo Librandi, Aug 08 2013
  • Mathematica
    CoefficientList[Series[(1 - 7 x) / ((1 - 5 x) (1 - 9 x)),{x, 0, 20}], x] (* Vincenzo Librandi, Aug 08 2013 *)

Formula

a(n) = 14*a(n-1)-45*a(n-2), a(0)=1, a(1)=7.
G.f.: (1-7*x)/((1-5*x)*(1-9*x)).
E.g.f.: exp(7*x) * cosh(2*x).

A098657 Expansion of (1-x-4x^2)/((1-2x)(1-8x^2)).

Original entry on oeis.org

1, 1, 6, 4, 40, 16, 288, 64, 2176, 256, 16896, 1024, 133120, 4096, 1056768, 16384, 8421376, 65536, 67239936, 262144, 537395200, 1048576, 4297064448, 4194304, 34368126976, 16777216, 274911461376, 67108864, 2199157473280, 268435456, 17592722915328, 1073741824
Offset: 0

Views

Author

Paul Barry, Sep 19 2004

Keywords

Comments

Let A=[1,2,1;2,0,-2;1,-2,1] the 3 X 3 symmetric Krawtchouk matrix. Then a(n) is the 1,1 element of A^n.

References

  • P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum walks, Contemporary Mathematics, 287 2001, pp. 83-96.

Crossrefs

Formula

a(n) = 2^((3*n-4)/2)*(1+(-1)^n)+2^(n-1).
a(n) = 2*a(n-1) + 8*a(n-2) - 16*a(n-3).
a(2n) = A081337(n) = (8^n+4^n)/2 and a(2n+1) = 4^n. - Peter Kagey, Jul 14 2023
Showing 1-3 of 3 results.