A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)
1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0
Keywords
A074608 a(n) = 3^n + 7^n.
2, 10, 58, 370, 2482, 17050, 118378, 825730, 5771362, 40373290, 282534298, 1977503890, 13841818642, 96890604730, 678227855818, 4747575858850, 33232973616322, 232630643127370, 1628413985330938, 11398896347634610
Offset: 0
Links
- G. C. Greubel and Jon E. Schoenfield, Table of n, a(n) for n = 0..1000 (terms 0..160 from G. C. Greubel).
- Index entries for linear recurrences with constant coefficients, signature (10,-21).
Crossrefs
Programs
-
Mathematica
Table[3^n + 7^n, {n, 0, 25}] RecurrenceTable[{a[0]== 2, a[1]== 10, a[n]== 10*a[n-1] - 21*a[n-2]}, a, {n,30}] (* G. C. Greubel, Aug 20 2015 *)
-
PARI
first(m)=vector(m,i,i--;3^i + 7^i) \\ Anders Hellström, Aug 20 2015
-
PARI
Vec(1/(1-3*x) + 1/(1-7*x) + O(x^50)) \\ Altug Alkan, Oct 12 2015
Formula
From Mohammad K. Azarian, Jan 11 2009: (Start)
G.f.: 1/(1-3*x) + 1/(1-7*x).
E.g.f.: exp(3*x) + exp(7*x). (End)
a(n) = 10*a(n-1)-21*a(n-2) with a(0)=2, a(1)=10. - Vincenzo Librandi, Jul 21 2010
a(n) = 2 * A081336(n). - Michel Marcus, Oct 07 2015
A081335 a(n) = (6^n + 2^n)/2.
1, 4, 20, 112, 656, 3904, 23360, 140032, 839936, 5039104, 30233600, 181399552, 1088393216, 6530351104, 39182090240, 235092508672, 1410554986496, 8463329787904, 50779978465280, 304679870267392, 1828079220555776
Offset: 0
Comments
Binomial transform of A034478. 4th binomial transform of (1, 0, 4, 0, 16, 0, 64, ...).
Case k=4 of the family of recurrences a(n) = 2*k*a(n-1) - (k^2-4)*a(n-2), a(0)=1, a(1)=k.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (8,-12).
Crossrefs
Cf. A081336.
Programs
-
GAP
List([0..30], n-> 2^(n-1)*(3^n + 1)); # G. C. Greubel, Aug 02 2019
-
Magma
[(6^n+2^n)/2: n in [0..30]]; // Vincenzo Librandi, Aug 08 2013
-
Mathematica
LinearRecurrence[{8, -12}, {1, 4}, 30] (* Harvey P. Dale, May 03 2013 *) CoefficientList[Series[(1-4x)/((1-2x)(1-6x)), {x,0,30}], x] (* Vincenzo Librandi, Aug 08 2013 *)
-
PARI
a(n)=(6^n+2^n)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[2^(n-1)*(3^n + 1) for n in (0..30)] # G. C. Greubel, Aug 02 2019
Formula
a(n) = 8*a(n-1) - 12*a(n-2), a(0)=1, a(1)=4.
G.f.: (1-4*x)/((1-2*x)*(1-6*x)).
E.g.f.: exp(4*x)*cosh(2*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * 4^(n-k) = Sum_{k=0..n} binomial(n,k) * 4^(n-k/2) * (1+(-1)^k)/2. - Paul Barry, Nov 22 2003
a(n) = Sum_{k=0..n} 4^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
A141041 a(n) = ((3 + 2*sqrt(3))^n + (3 - 2*sqrt(3))^n)/2.
1, 3, 21, 135, 873, 5643, 36477, 235791, 1524177, 9852435, 63687141, 411680151, 2661142329, 17201894427, 111194793549, 718774444575, 4646231048097, 30033709622307, 194140950878133, 1254946834135719, 8112103857448713
Offset: 0
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,3).
Programs
-
Magma
[n le 2 select 3^(n-1) else 6*Self(n-1) +3*Self(n-2): n in [1..31]]; // G. C. Greubel, Oct 10 2022
-
Mathematica
a[n_]= ((3+2*Sqrt[3])^n + (3-2*Sqrt[3])^n)/2; Table[FullSimplify[a[n]], {n,0,30}] LinearRecurrence[{6,3},{1,3},30] (* Harvey P. Dale, Aug 25 2014 *)
-
SageMath
A141041 = BinaryRecurrenceSequence(6,3,1,3) [A141041(n) for n in range(31)] # G. C. Greubel, Oct 10 2022
Formula
a(n) = 3*abs(A099842(n-1)), for n > 0.
G.f.: (1-3*x)/(1-6*x-3*x^2). - Philippe Deléham, Mar 03 2012
a(n) = 6*a(n-1) + 3*a(n-2), a(0) = 1, a(1) = 3. - Philippe Deléham, Mar 03 2012
a(n) = Sum_{k=0..n} A201701(n,k)*3^(n-k). - Philippe Deléham, Mar 03 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(4*k-3)/(x*(4*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = (-i*sqrt(3))^n * ChebyshevT(n, i*sqrt(3)). - G. C. Greubel, Oct 10 2022
Extensions
Edited by N. J. A. Sloane, Aug 24 2008
A081337 a(n) = (8^n + 4^n)/2.
1, 6, 40, 288, 2176, 16896, 133120, 1056768, 8421376, 67239936, 537395200, 4297064448, 34368126976, 274911461376, 2199157473280, 17592722915328, 140739635838976, 1125908496777216, 9007233614479360, 72057731476881408
Offset: 0
Comments
Binomial transform of A081336. 6th binomial transform of (1,0,4,0,16,0,64,....).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (12,-32).
Crossrefs
Cf. A081338.
Programs
-
Magma
[(8^n+4^n)/2: n in [0..25]]; // Vincenzo Librandi, Aug 08 2013
-
Mathematica
CoefficientList[Series[(1 - 6 x) / ((1 - 4 x) (1 - 8 x)),{x, 0, 20}], x] (* Vincenzo Librandi, Aug 08 2013 *)
Formula
a(n) = 12*a(n-1) -32*a(n-2), a(0)=1, a(1)=6.
G.f.: (1-6*x)/((1-4*x)*(1-8*x)).
E.g.f.: exp(6*x) * cosh(2*x).
A141575 A gap prime-type triangular sequence of coefficients: gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].
1, 2, 2, 13, 17, 21, 185, 245, 305, 425, 7361, 12833, 18817, 32321, 47873, 215171, 271051, 328691, 449251, 576851, 853171, 12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281, 532365557, 659940697, 793109789, 1076412613
Offset: 1
Comments
General Lucas-like Binet sequences
where Prime[m]starts at 1:
a(n)=((Prime[n]+gap[n]*Sqrt[Prime[m])^n+(Prime[n]-gap[n]*Sqrt[Prime[m])^n)/2.
Row sums are:
{1, 4, 51, 1160, 119205, 2694186, 583504495, 12222749556, 4868938911913,
3621654266405174, 21636046625243691}
Examples
{1}, {2, 2}, {13, 17, 21}, {185, 245, 305, 425}, {7361, 12833, 18817, 32321, 47873}, {215171, 271051, 328691, 449251, 576851, 853171}, {12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281}, {532365557, 659940697, 793109789, 1076412613, 1382639597, 2065328317, 2442521189, 3270431797}, {40436937953, 68810349217, 102354570337, 185966400481, 293310073697, 587469359713, 778486092257, 1259085279457, 1553019848801}, {7312866926183, 15217609281335, 25813998655559, 56317915837223, 101380456546055, 246072307427783, 351480840333479, 643872497781095, 837435900955463, 1336749872660999}, {512759709537725, 608866569299409, 709085196658213, 922088454409101, 1152233212894709, 1665820807145925, 1950209769575213, 2576571400365309, 2919512658836837, 3667365684348213, 4951533162173037}
Programs
-
Mathematica
gap[n_] := Prime[n + 1] - Prime[n]; t[n_, m_] := If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]]; Table[Table[FullSimplify[t[n, m]], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].
Comments
Examples
Crossrefs
Programs
Mathematica
Formula