cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A081336 a(n) = (7^n + 3^n)/2.

Original entry on oeis.org

1, 5, 29, 185, 1241, 8525, 59189, 412865, 2885681, 20186645, 141267149, 988751945, 6920909321, 48445302365, 339113927909, 2373787929425, 16616486808161, 116315321563685, 814206992665469, 5699448173817305, 39896134892198201
Offset: 0

Views

Author

Paul Barry, Mar 18 2003

Keywords

Comments

Binomial transform of A081336.
5th binomial transform of (1,0,4,0,16,0,64,...).

Crossrefs

Programs

Formula

a(n) = 10*a(n-1) - 21*a(n-2), a(0)=1, a(1)=5.
G.f.: (1-5*x)/((1-3*x)*(1-7*x)).
E.g.f.: exp(5*x) * cosh(2*x).
a(n) = A074608(n) / 2. - Michel Marcus, Oct 07 2015
a(n) = Sum_{k=0..n} A027907(n,2k)*4^k . - J. Conrad, Aug 24 2016

A245806 a(n) = 3^n + 10^n.

Original entry on oeis.org

2, 13, 109, 1027, 10081, 100243, 1000729, 10002187, 100006561, 1000019683, 10000059049, 100000177147, 1000000531441, 10000001594323, 100000004782969, 1000000014348907, 10000000043046721, 100000000129140163, 1000000000387420489, 10000000001162261467
Offset: 0

Views

Author

Vincenzo Librandi, Aug 04 2014

Keywords

Crossrefs

Cf. 3^n+k^n: A034472 (k=1), A007689 (k=2), A008776 (k=3), A074605 (k=4), A074606 (k=5), A074607 (k=6), A074608 (k=7), A074609 (k=8), A074610 (k=9), this sequence (k=10).

Programs

  • Magma
    [3^n+10^n: n in [0..25]];
    
  • Magma
    I:=[2,13]; [n le 2 select I[n] else 13*Self(n-1)-30*Self(n-2): n in [1..25]];
    
  • Mathematica
    Table[(3^n + 10^n), {n, 0, 30}] (* or *) CoefficientList[Series[(2 - 13 x)/((1 - 3 x) (1 - 10 x)), {x, 0, 30}], x]
  • PARI
    a(n)=3^n + 10^n \\ Charles R Greathouse IV, Aug 26 2014

Formula

G.f.: (2-13*x)/((1-3*x)(1-10*x)).
E.g.f.: e^(3*x) + e^(10*x).
a(n) = 13*a(n-1)-30*a(n-2) for n>1.
a(n) = A000244(n) + A011557(n). - Michel Marcus, Aug 04 2014

A245807 a(n) = 7^n + 10^n.

Original entry on oeis.org

2, 17, 149, 1343, 12401, 116807, 1117649, 10823543, 105764801, 1040353607, 10282475249, 101977326743, 1013841287201, 10096889010407, 100678223072849, 1004747561509943, 10033232930569601, 100232630513987207, 1001628413597910449, 10011398895185373143
Offset: 0

Views

Author

Vincenzo Librandi, Aug 04 2014

Keywords

Crossrefs

Cf. 7^n+k^n: A034491 (k=1), A074602 (k=2), A074608 (k=3), A074613 (k=4), A074616 (k=5), A074619 (k=6), A109808 (k=7), A074622 (k=8), A074623 (k=9), this sequence (k=10).

Programs

  • Magma
    [7^n+10^n: n in [0..25]];
    
  • Magma
    I:=[2,17]; [n le 2 select I[n] else 17*Self(n-1)-70*Self(n-2): n in [1..25]];
  • Mathematica
    Table[(7^n + 10^n), {n, 0, 30}] (* or *) CoefficientList[Series[(2 - 17 x)/((1 - 7 x) (1 - 10 x)), {x, 0, 40}], x]

Formula

G.f.: (2-17*x)/((1-7*x)*(1-10*x)).
E.g.f.: e^(7*x) + e^(10*x).
a(n) = 17*a(n-1)-70*a(n-2).
a(n) = A000420(n) + A011557(n).

A045586 Numbers k that divide 7^k + 3^k.

Original entry on oeis.org

1, 2, 5, 25, 55, 58, 125, 155, 275, 605, 625, 775, 1265, 1375, 1682, 1705, 3025, 3125, 3875, 4805, 6325, 6655, 6875, 8525, 13915, 15125, 15625, 18755, 19375, 24025, 29095, 31625, 33275, 34375, 39215, 42625, 48778, 52855, 53882, 69575, 73205
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A074608.

Programs

  • Mathematica
    Select[Range[75000],Divisible[7^#+3^#,#]&] (* Harvey P. Dale, Apr 21 2019 *)
    Select[Range[75000], Divisible[PowerMod[7, #, #] + PowerMod[3, #, #], #] &] (* Amiram Eldar, Oct 23 2021 *)

A045593 Numbers k that divide 9^k + 4^k.

Original entry on oeis.org

1, 13, 169, 2197, 14209, 28561, 184717, 371293, 2401321, 4826809, 15530437, 31217173, 62748517, 130238329, 178895977, 201895681, 405823249, 815730721, 1693098277, 2325647701, 2422762381, 2624643853, 4286414821, 5275702237
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A074608.

A258340 a(n) = (7^n + 3^n - 2)/8.

Original entry on oeis.org

1, 7, 46, 310, 2131, 14797, 103216, 721420, 5046661, 35316787, 247187986, 1730227330, 12111325591, 84778481977, 593446982356, 4154121702040, 29078830390921, 203551748166367, 1424862043454326, 9974033723049550, 69818234317954651, 488727634995505957
Offset: 1

Views

Author

Edwin McCravy, Aug 05 2015

Keywords

Comments

This sequence appeared on an test given to job interviewers.

Crossrefs

Cf. A074608.

Programs

Formula

a(n) = (A074608(n) - 2)/8. - Michel Marcus, Aug 20 2015
G.f.: x*(1-4*x)/((1-x)*(1-3*x)*(1-7*x)). - Vincenzo Librandi, Aug 22 2015
a(n) = 11*a(n-1) - 31*a(n-2) + 21*a(n-3) with n>2, a(0)=0. - Bruno Berselli, Aug 24 2015
a(n) = Sum_{k=1..n} A027907(n,2k)*4^(k-1) . - J. Conrad, Aug 30 2016
Showing 1-6 of 6 results.