A081435 Diagonal in array of n-gonal numbers A081422.
1, 5, 18, 46, 95, 171, 280, 428, 621, 865, 1166, 1530, 1963, 2471, 3060, 3736, 4505, 5373, 6346, 7430, 8631, 9955, 11408, 12996, 14725, 16601, 18630, 20818, 23171, 25695, 28396, 31280, 34353, 37621, 41090, 44766, 48655, 52763, 57096, 61660
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..40], n-> (n+1)*(2*(n+1)^2-3*n)/2); # G. C. Greubel, Aug 14 2019
-
Magma
[(2*n^3+3*n^2+3*n+2)/2: n in [0..40]]; // Vincenzo Librandi, Aug 08 2013
-
Maple
a := n-> (n+1)*(2*(n+1)^2-3*n)/2; seq(a(n), n = 0..40); # G. C. Greubel, Aug 14 2019
-
Mathematica
Table[(n^3 +(n+1)^3 -1)/2 +1, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, May 04 2011 *) CoefficientList[Series[(1 +3x^2 -4x^3)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Aug 08 2013 *) LinearRecurrence[{4,-6,4,-1},{1,5,18,46},40] (* Harvey P. Dale, Dec 28 2024 *)
-
PARI
vector(40, n, n--; (n+1)*(2*(n+1)^2-3*n)/2) \\ G. C. Greubel, Aug 14 2019
-
Sage
[(n+1)*(2*(n+1)^2-3*n)/2 for n in (0..40)] # G. C. Greubel, Aug 14 2019
Formula
a(n) = (2*n^3 +3*n^2 +3*n +2)/2.
G.f.: (1 +3*x^2 -4*x^3)/(1-x)^5.
E.g.f.: (2 +8*x +9*x^2 +2*x^3)*exp(x)/2. - G. C. Greubel, Aug 14 2019
Comments