A081490 Leading term of n-th row of A081491.
1, 2, 4, 9, 19, 36, 62, 99, 149, 214, 296, 397, 519, 664, 834, 1031, 1257, 1514, 1804, 2129, 2491, 2892, 3334, 3819, 4349, 4926, 5552, 6229, 6959, 7744, 8586, 9487, 10449, 11474, 12564, 13721, 14947, 16244, 17614, 19059, 20581, 22182, 23864, 25629
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([1..50], n-> (2*n^3-9*n^2+19*n-6)/6); # G. C. Greubel, Aug 13 2019
-
Magma
[(2*n^3-9*n^2+19*n-6)/6: n in [1..50]]; // G. C. Greubel, Aug 13 2019
-
Maple
with (combinat):a:=n->sum(fibonacci(3,i), i=0..n):seq(a(n)+1, n=-1..42); # Zerinvary Lajos, Apr 25 2008
-
Mathematica
Rest[CoefficientList[Series[x (1-2x+2x^2+x^3)/(x-1)^4,{x,0,50}],x]] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,2,4,9}, 50] (* Harvey P. Dale, Apr 30 2011 *)
-
PARI
vector(50, n, (2*n^3-9*n^2+19*n-6)/6) \\ G. C. Greubel, Aug 13 2019
-
Sage
[(2*n^3-9*n^2+19*n-6)/6 for n in (1..50)] # G. C. Greubel, Aug 13 2019
Formula
a(1) = 1, a(n) = A081489(n-1) + 1.
From R. J. Mathar, Feb 06 2010: (Start)
G..f: x*(1-2*x+2*x^2+x^3)/(x-1)^4.
a(n) = n*(2*n^2 -9*n +19)/6 -1. (End)
a(n) = (n-2)^2 + a(n-1)+1, n>1. - Gary Detlefs, Jun 29 2010
a(1)=1, a(2)=2, a(3)=4, a(4)=9, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Harvey P. Dale, Apr 30 2011
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 29 2003
Comments