cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081490 Leading term of n-th row of A081491.

Original entry on oeis.org

1, 2, 4, 9, 19, 36, 62, 99, 149, 214, 296, 397, 519, 664, 834, 1031, 1257, 1514, 1804, 2129, 2491, 2892, 3334, 3819, 4349, 4926, 5552, 6229, 6959, 7744, 8586, 9487, 10449, 11474, 12564, 13721, 14947, 16244, 17614, 19059, 20581, 22182, 23864, 25629
Offset: 1

Views

Author

Amarnath Murthy, Mar 25 2003

Keywords

Comments

First differences are given by A002522 = n^2 + 1. Second differences are odd numbers given by A005408.
a(1)=1, a(2)=2, (a(n+1) -a(n)) - (a(n) -a(n-1)) = 2*(n-1)-1. - Ben Paul Thurston, Aug 22 2009

Crossrefs

Programs

  • GAP
    List([1..50], n-> (2*n^3-9*n^2+19*n-6)/6); # G. C. Greubel, Aug 13 2019
  • Magma
    [(2*n^3-9*n^2+19*n-6)/6: n in [1..50]]; // G. C. Greubel, Aug 13 2019
    
  • Maple
    with (combinat):a:=n->sum(fibonacci(3,i), i=0..n):seq(a(n)+1, n=-1..42); # Zerinvary Lajos, Apr 25 2008
  • Mathematica
    Rest[CoefficientList[Series[x (1-2x+2x^2+x^3)/(x-1)^4,{x,0,50}],x]] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,2,4,9}, 50] (* Harvey P. Dale, Apr 30 2011 *)
  • PARI
    vector(50, n, (2*n^3-9*n^2+19*n-6)/6) \\ G. C. Greubel, Aug 13 2019
    
  • Sage
    [(2*n^3-9*n^2+19*n-6)/6 for n in (1..50)] # G. C. Greubel, Aug 13 2019
    

Formula

a(1) = 1, a(n) = A081489(n-1) + 1.
From R. J. Mathar, Feb 06 2010: (Start)
G..f: x*(1-2*x+2*x^2+x^3)/(x-1)^4.
a(n) = n*(2*n^2 -9*n +19)/6 -1. (End)
a(n) = (n-2)^2 + a(n-1)+1, n>1. - Gary Detlefs, Jun 29 2010
a(1)=1, a(2)=2, a(3)=4, a(4)=9, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Harvey P. Dale, Apr 30 2011

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 29 2003