cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A081091 Primes of the form 2^i + 2^j + 1, i > j > 0.

Original entry on oeis.org

7, 11, 13, 19, 37, 41, 67, 73, 97, 131, 137, 193, 521, 577, 641, 769, 1033, 1153, 2053, 2081, 2113, 4099, 4129, 8209, 12289, 16417, 18433, 32771, 32801, 32833, 40961, 65539, 133121, 147457, 163841, 262147, 262153, 262657, 270337, 524353, 524801
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2003

Keywords

Comments

This is sequence A070739 without the Fermat primes, A000215. Sequence A081504 lists the i for which there are no primes. - T. D. Noe, Jun 22 2007
Primes in A014311. - Reinhard Zumkeller, May 03 2012

Examples

			    7 = 2^2 + 2^1 + 1
   11 = 2^3 + 2^1 + 1
   13 = 2^3 + 2^2 + 1
   19 = 2^4 + 2^1 + 1
   37 = 2^5 + 2^2 + 1
   41 = 2^5 + 2^3 + 1
   67 = 2^6 + 2^1 + 1
   73 = 2^6 + 2^3 + 1
   97 = 2^6 + 2^5 + 1
  131 = 2^7 + 2^1 + 1
  137 = 2^7 + 2^3 + 1
  193 = 2^7 + 2^6 + 1
  521 = 2^9 + 2^3 + 1
		

Crossrefs

Essentially the same as A070739.
Cf. A095077 (primes with four bits set).
A057733 = 2^A057732 + 3 and A039687 = 3*2^A002253 + 1 are subsequences.

Programs

  • Haskell
    a081091 n = a081091_list !! (n-1)
    a081091_list = filter ((== 1) . a010051') a014311_list
    -- Reinhard Zumkeller, May 03 2012
    
  • Maple
    N:= 20: # to get all terms < 2^N
    select(isprime, [seq(seq(2^i+2^j+1,j=1..i-1),i=1..N-1)]); # Robert Israel, May 17 2016
  • Mathematica
    Select[Flatten[Table[2^i + 2^j + 1, {i, 21}, {j, i-1}]], PrimeQ] (* Alonso del Arte, Jan 11 2011 *)
  • PARI
    do(mx)=my(v=List(),t); for(i=2,mx,for(j=1,i-1,if(ispseudoprime(t=2^i+2^j+1), listput(v,t)))); Vec(v) \\ Charles R Greathouse IV, Jan 02 2014
    
  • PARI
    is(n)=hammingweight(n)==3 && isprime(n) \\ Charles R Greathouse IV, Aug 28 2017
    
  • PARI
    A81091=[7]; next_A081091(p, i=exponent(p), j=exponent(p-2^i))=!until(isprime(2^i+2^j+1), j++>=i && i++ && j=1)+2^i+2^j
    A081091(n)={for(k=#A81091, n-1, A81091=concat(A81091, next_A081091(A81091[k]))); A81091[n]} \\ M. F. Hasler, Mar 03 2023
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def A081091_gen(): # generator of terms
        return filter(isprime,map(lambda s:int('1'+''.join(s)+'1',2),(s for l in count(1) for s in multiset_permutations('0'*(l-1)+'1'))))
    A081091_list = list(islice(A081091_gen(),30)) # Chai Wah Wu, Jul 19 2022

Formula

A000120(a(n)) = 3.

A095056 Number of primes with three 1-bits (A081091) in range [2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 3, 0, 4, 2, 3, 2, 2, 2, 4, 1, 3, 4, 5, 3, 2, 1, 5, 1, 0, 2, 5, 2, 2, 8, 6, 0, 5, 3, 4, 2, 3, 2, 2, 0, 3, 5, 0, 1, 5, 3, 7, 0, 1, 2, 5, 1, 5, 2, 6, 0, 6, 0, 2, 3, 2, 1, 2, 0, 2, 3, 5, 3, 6, 2, 2, 2, 5, 2, 7, 1, 3, 2, 3, 1, 6, 2, 4, 3, 3, 2, 6, 1, 1, 5, 7, 2, 4, 2, 5, 0, 3, 4, 3, 1, 2, 1, 3, 0, 5
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Examples

			From _Michael De Vlieger_, Feb 27 2017: (Start)
a(1) = 0 because there are no primes with three 1s in binary expansion between 2^1 and 2^2.
a(2) = 1 since the only prime between 2^2 and 2^3 with three 1s in binary expansion is 7 = binary 111.
a(3) = 2 since between 2^3 and 2^4 we have 11 and 13 (binary 1011 and 1101, respectively) have three 1s.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[m = Count[Prime@ Range[PrimePi[2^n] + 1, PrimePi[2^(n + 1) - 1]], k_ /; DigitCount[k, 2, 1] == 3]; Print@ m; m, {n, 24}] (* Michael De Vlieger, Feb 27 2017 *)

Extensions

More terms from T. D. Noe, Oct 17 2007

A133830 Least positive number k < n such that the binary trinomial 1 + 2^n + 2^k is prime, or 0 if there is no such k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 0, 3, 3, 2, 1, 4, 5, 1, 1, 11, 1, 6, 5, 4, 7, 3, 9, 0, 17, 15, 1, 15, 1, 6, 0, 4, 9, 14, 13, 3, 11, 25, 0, 6, 7, 0, 17, 7, 15, 2, 0, 30, 23, 6, 21, 2, 33, 1, 0, 3, 0, 14, 5, 6, 21, 19, 0, 30, 3, 1, 5, 34, 19, 26, 17, 19, 17, 5, 33, 15, 23, 27, 33, 4, 3, 26, 1, 39, 35, 19, 9, 18
Offset: 2

Views

Author

T. D. Noe, Sep 26 2007

Keywords

Comments

Sequence A081504 gives the n such that a(n) = 0. For those n, A133831(n) gives the least k > n for which the binary trinomial is prime.

Crossrefs

Cf. A057732, A059242, A057196, A057200, A081091 (various forms of prime binary trinomials).
Cf. A095056, A133831, A133832 (k > n equivalent).

Programs

  • Mathematica
    Table[s=1+2^n; k=1; While[k
    				

Extensions

Edited by Peter Munn, Sep 30 2024

A092100 Smallest number of 1's in binary representations of primes between 2^n and 2^(n+1) is 4.

Original entry on oeis.org

25, 32, 40, 43, 48, 56, 58, 64, 96, 104, 112, 120, 128, 134, 140, 145, 152, 160, 176, 185, 192, 208, 212, 224, 235, 240, 244, 248, 252, 256, 264, 272, 280, 286, 288, 292, 302, 304, 308, 320, 326, 332, 348, 356, 360, 384, 392, 394, 400
Offset: 1

Views

Author

Robert G. Wilson v, Feb 19 2004

Keywords

Comments

Where 4 appears in A091935.
This sequence differs from multiples of 8 (A008590) very little but significantly; even fewer are odd.
Essentially the same as A081504. - R. J. Mathar, Sep 08 2008

Crossrefs

Programs

  • Mathematica
    Compute the second line of the Mathematica code for A091936, then Do[ If[ Count[ IntegerDigits[ f[n], 2], 1] == 4, Print[n]], {n, 1, 400}] (* Robert G. Wilson v, Feb 19 2004 *)

A346146 Numbers m such that there are no primes of the form 2^m + 2^k - 1, for 0 < k < m.

Original entry on oeis.org

1, 9, 17, 25, 29, 33, 43, 45, 49, 53, 57, 59, 69, 73, 81, 89, 97, 103, 113, 129, 134, 143, 161, 165, 173, 193, 201, 205, 206, 209, 225, 227, 229, 233, 237, 241, 257, 273, 278, 281, 289, 293, 297, 303, 305, 321, 345, 349, 353, 369, 377, 381, 383, 385, 401, 405
Offset: 1

Views

Author

Lamine Ngom, Jul 06 2021

Keywords

Comments

In comparison with A081504 (dealing with 2^m + 2^k + 1) where most of the terms are even, here the vast majority of terms are odd.

Crossrefs

Cf. A081504.

Programs

  • Mathematica
    q[m_] := AllTrue[Range[m - 1], ! PrimeQ[2^m + 2^# - 1] &]; Select[Range[400], q] (* Amiram Eldar, Jul 06 2021 *)
  • PARI
    isok(m) = for(k=1, m-1, if (ispseudoprime(2^m+2^k-1), return (0))); return (1); \\ Michel Marcus, Jul 06 2021
Showing 1-5 of 5 results.