cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A119809 Decimal expansion of the constant defined by binary sums involving Beatty sequences: c = Sum_{n>=1} 1/2^A049472(n) = Sum_{n>=1} A001951(n)/2^n.

Original entry on oeis.org

2, 3, 2, 2, 5, 8, 8, 5, 2, 2, 5, 8, 8, 0, 6, 7, 7, 3, 0, 1, 2, 1, 4, 4, 0, 6, 8, 2, 7, 8, 7, 9, 8, 4, 0, 8, 0, 1, 1, 9, 5, 0, 2, 5, 0, 8, 0, 0, 4, 3, 2, 9, 2, 5, 6, 6, 5, 7, 1, 8, 0, 6, 2, 3, 9, 4, 4, 0, 5, 2, 1, 7, 5, 6, 0, 9, 6, 9, 5, 3, 9, 2, 0, 6, 2, 3, 5, 5, 7, 5, 0, 0, 7, 2, 3, 9, 1, 7, 7, 2, 2, 4, 7, 9, 7
Offset: 1

Views

Author

Paul D. Hanna, May 26 2006

Keywords

Comments

Dual constant: A119812 = Sum_{n>=1} A049472(n)/2^n = Sum_{n>=1} 1/2^A001951(n). Since this constant c = 2 + Sum_{n>=1} 1/2^A003151(n), where A003151(n) = n + floor(n*sqrt(2)), then the binary expansion of the fractional part of c has 1's only at positions given by Beatty sequence A003151(n) and zeros elsewhere. Plouffe's Inverter describes approximations to the fractional part of c as "polylogarithms type of series with the floor function [ ]."

Examples

			c = 2.32258852258806773012144068278798408011950250800432925665718...
Continued fraction (A119810):
c = [2;3,10,132,131104,2199023259648,633825300114114700748888473600,..]
where partial quotients are given by:
PQ(n) = 2^A001333(n-1) + 2^A000129(n-2) (n>1), with PQ(1)=2.
The following are equivalent expressions for the constant:
(1) Sum_{n>=1} 1/2^A049472(n); A049472(n)=[n/sqrt(2)];
(2) Sum_{n>=1} A001951(n)/2^n; A001951(n)=[n*sqrt(2)];
(3) Sum_{n>=1} 1/2^A003151(n) + 2; A003151(n)=[n*sqrt(2)]+n;
(4) Sum_{n>=1} 1/2^A097508(n) - 2; A097508(n)=[n*sqrt(2)]-n;
(5) Sum_{n>=1} A006337(n)/2^n + 1; A006337(n)=[(n+1)*sqrt(2)]-[n*sqrt(2)];
where [x] = floor(x).
These series illustrate the above expressions:
(1) c = 1/2^0 + 1/2^1 + 1/2^2 + 1/2^2 + 1/2^3 + 1/2^4 + 1/2^4 +...
(2) c = 1/2^1 + 2/2^2 + 4/2^3 + 5/2^4 + 7/2^5 + 8/2^6 + 9/2^7 +...
(3) c = 2 + 1/2^2 + 1/2^4 + 1/2^7 + 1/2^9 + 1/2^12 + 1/2^14 +...
(4) c =-2 + 1/2^0 + 1/2^0 + 1/2^1 + 1/2^1 + 1/2^2 + 1/2^2 + 1/2^2 +...
(5) c = 1 + 1/2^1 + 2/2^2 + 1/2^3 + 2/2^4 + 1/2^5 + 1/2^6 + 2/2^7 +...
		

Crossrefs

Cf. A119810 (continued fraction), A119811 (convergents); A119812 (dual constant); A000129 (Pell), A001333; Beatty sequences: A049472, A001951, A003151, A097508, A006337; variants: A014565 (rabbit constant), A073115.

Programs

  • PARI
    {a(n)=local(t=sqrt(2),x=sum(m=1,10*n,floor(m*t)/2^m));floor(10^n*x)%10}

Formula

Equals Sum(1/(2^q-1)) with the summation extending over all pairs of integers gcd(p,q) = 1, 0 < p/q < sqrt(2) (O'Bryant, 2002). - Amiram Eldar, May 25 2023

A081544 Decimal expansion of Sum_(1/(2^q-1)) with the summation extending over all pairs of integers gcd(p,q) = 1, 0 < p/q < phi, where phi is the Golden ratio.

Original entry on oeis.org

2, 7, 0, 9, 8, 0, 3, 4, 4, 2, 8, 6, 1, 2, 9, 1, 3, 1, 4, 6, 4, 1, 7, 8, 7, 3, 9, 9, 4, 4, 4, 5, 7, 5, 5, 9, 7, 0, 1, 2, 5, 0, 2, 2, 0, 5, 7, 6, 7, 8, 6, 0, 5, 1, 6, 9, 5, 7, 0, 0, 2, 6, 4, 4, 6, 5, 1, 2, 8, 7, 1, 2, 8, 1, 4, 8, 4, 6, 5, 9, 6, 2, 4, 7, 8, 3, 1, 6, 1, 3, 2, 4, 5, 9, 9, 9, 3, 8, 8, 3, 9, 2, 6, 5, 3
Offset: 1

Views

Author

Benoit Cloitre, Apr 21 2003

Keywords

Crossrefs

Cf. A001622 (golden ratio), A014565, A073115.

Programs

  • Mathematica
    With[{digmax = 120}, RealDigits[Sum[1/2^Floor[k/GoldenRatio], {k, 1, 10*digmax}], 10, digmax][[1]]] (* Amiram Eldar, May 25 2023 *)

Formula

Equals Sum_{k>=1} (1/2)^floor(k/phi).
Equals A014565 + 2 = A073115 + 1. - Amiram Eldar, May 25 2023

Extensions

Data corrected by Amiram Eldar, May 25 2023

A081550 Decimal expansion of Sum_(1/(2^q-1)) with the summation extending over all pairs of integers gcd(p,q) = 1, 0 < p/q < Pi.

Original entry on oeis.org

6, 0, 0, 7, 8, 7, 4, 0, 1, 5, 7, 4, 8, 0, 3, 1, 4, 9, 6, 0, 6, 2, 9, 9, 2, 1, 2, 5, 9, 8, 4, 2, 5, 1, 8, 7, 1, 4, 4, 9, 1, 9, 9, 6, 5, 2, 9, 2, 6, 6, 9, 7, 1, 6, 8, 8, 3, 2, 6, 0, 7, 6, 1, 7, 7, 6, 7, 4, 3, 2, 8, 6, 9, 3, 7, 1, 5, 0, 5, 7, 5, 9, 4, 2, 2, 6, 1, 5, 0, 8, 9, 0, 4, 8, 0, 9, 4, 5, 9, 1, 5, 6, 9, 0, 1
Offset: 1

Views

Author

Benoit Cloitre, Apr 21 2003

Keywords

Examples

			6.007874015...
		

Crossrefs

Cf. A000796 (Pi).

Programs

  • Mathematica
    With[{digmax = 120}, RealDigits[Sum[1/2^Floor[k/Pi], {k, 1, 20*digmax}], 10, digmax][[1]]] (* Amiram Eldar, May 25 2023 *)

Formula

Equals Sum_{k>=1} (1/2)^floor(k/Pi) = Sum_{k>=1} 1/2^A032615(k).

Extensions

Data corrected by Amiram Eldar, May 25 2023

A081576 Square array of binomial transforms of Fibonacci numbers, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 3, 0, 1, 7, 20, 21, 5, 0, 1, 9, 38, 75, 55, 8, 0, 1, 11, 62, 189, 275, 144, 13, 0, 1, 13, 92, 387, 905, 1000, 377, 21, 0, 1, 15, 128, 693, 2305, 4256, 3625, 987, 34, 0, 1, 17, 170, 1131, 4955, 13392, 19837, 13125, 2584, 55
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Array rows are solutions of the recurrence a(n) = (2*k+1)*a(n-1) - A028387(k-1)*a(n-2) where a(0) = 0 and a(1) = 1.

Examples

			Square array begins as:
  0, 1,  1,   2,    3,    5,     8, ... A000045;
  0, 1,  3,   8,   21,   55,   144, ... A001906;
  0, 1,  5,  20,   75,  275,  1000, ... A030191;
  0, 1,  7,  38,  189,  905,  4256, ... A099453;
  0, 1,  9,  62,  387, 2305, 13392, ... A081574;
  0, 1, 11,  92,  693, 4955, 34408, ... A081575;
  0, 1, 13, 128, 1131, 9455, 76544, ...
The antidiagonal triangle begins as:
  0;
  0, 1;
  0, 1,  1;
  0, 1,  3,  2;
  0, 1,  5,  8,   3;
  0, 1,  7, 20,  21,   5;
  0, 1,  9, 38,  75,  55,   8;
  0, 1, 11, 62, 189, 275, 144, 13;
		

Crossrefs

Array row n: A000045 (n=0), A001906 (n=1), A030191 (n=2), A099453 (n=3), A081574 (n=4), A081575 (n=5).
Array columns k: A005408 (k=3), A077588 (k=4).

Programs

  • Magma
    A081576:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j)*(n-k)^(k-j): j in [0..k]]) >;
    [A081576(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    T[n_, k_]:= If[n==0, Fibonacci[k], Sum[Binomial[k, j]*Fibonacci[j]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, May 26 2021 *)
  • Sage
    def A081576(n,k): return sum( binomial(k,j)*fibonacci(j)*(n-k)^(k-j) for j in (0..k) )
    flatten([[A081576(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Rows are successive binomial transforms of F(n).
T(n, k) = ( ( (2*n + 1 + sqrt(5))/2 )^k - ( (2*n + 1 - sqrt(5))/2 )^k )/sqrt(5).
From G. C. Greubel, May 26 2021: (Start)
T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*n^(k-j) with T(0, k) = Fibonacci(k) (square array).
T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*(n-k)^(k-j) (antidiagonal triangle). (End)
Showing 1-4 of 4 results.