A081578 Pascal-(1,3,1) array.
1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 33, 13, 1, 1, 17, 73, 73, 17, 1, 1, 21, 129, 245, 129, 21, 1, 1, 25, 201, 593, 593, 201, 25, 1, 1, 29, 289, 1181, 1921, 1181, 289, 29, 1, 1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1, 1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1
Offset: 0
Examples
Square array begins as: 1, 1, 1, 1, 1, ... A000012; 1, 5, 9, 13, 17, ... A016813; 1, 9, 33, 73, 129, ... A081585; 1, 13, 73, 245, 593, ... A081586; 1, 17, 129, 593, 1921, ... As a triangle this begins: 1; 1, 1; 1, 5, 1; 1, 9, 9, 1; 1, 13, 33, 13, 1; 1, 17, 73, 73, 17, 1; 1, 21, 129, 245, 129, 21, 1; 1, 25, 201, 593, 593, 201, 25, 1; 1, 29, 289, 1181, 1921, 1181, 289, 29, 1; 1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1; 1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1; - _Philippe Deléham_, Mar 15 2014
Links
- Vincenzo Librandi, Rows n = 0..100, flattened
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- P. Barry, A note on Krawtchouk Polynomials and Riordan Arrays, JIS 11 (2008) 08.2.2
Crossrefs
Programs
-
Haskell
a081578 n k = a081578_tabl !! n !! k a081578_row n = a081578_tabl !! n a081578_tabl = map fst $ iterate (\(us, vs) -> (vs, zipWith (+) (map (* 3) ([0] ++ us ++ [0])) $ zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1]) -- Reinhard Zumkeller, Mar 16 2014
-
Magma
A081578:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >; [A081578(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Mathematica
Table[Hypergeometric2F1[-k, k-n, 1, 4], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
Sage
flatten([[hypergeometric([-k, k-n], [1], 4).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
Formula
Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 3*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+3*x)^k/(1-x)^(k+1).
T(n,k) = Sum_{j=0..n} binomial(k,j-k)*binomial(n+k-j,k)*3^(j-k). - Paul Barry, Oct 23 2006
E.g.f. for the n-th subdiagonal of the triangle, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(4*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 8*x + 16*x^2/2) = 1 + 9*x + 33*x^2/2! + 73*x^3/3! + 129*x^4/4! + 201*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 3.
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 3.
Sum_{k=0..n} T(n, k, 3) = A015518(n+1). (End)
Comments