cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A081580 Pascal-(1,5,1) array.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 61, 19, 1, 1, 25, 145, 145, 25, 1, 1, 31, 265, 595, 265, 31, 1, 1, 37, 421, 1585, 1585, 421, 37, 1, 1, 43, 613, 3331, 6145, 3331, 613, 43, 1, 1, 49, 841, 6049, 17401, 17401, 6049, 841, 49, 1, 1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016921, A081589, A081590. Coefficients of the row polynomials in the Newton basis are given by A013613.

Examples

			Square array begins as:
  1,  1,   1,    1,    1, ... A000012;
  1,  7,  13,   19,   25, ... A016921;
  1, 13,  61,  145,  265, ... A081589;
  1, 19, 145,  595, 1585, ... A081590;
  1, 25, 265, 1585, 6145, ...
The triangle begins as:
  1;
  1,  1;
  1,  7,    1;
  1, 13,   13,    1;
  1, 19,   61,   19,     1;
  1, 25,  145,  145,    25,     1;
  1, 31,  265,  595,   265,    31,     1;
  1, 37,  421, 1585,  1585,   421,    37,    1;
  1, 43,  613, 3331,  6145,  3331,   613,   43,    1;
  1, 49,  841, 6049, 17401, 17401,  6049,  841,   49,  1;
  1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1; - _Philippe Deléham_, Mar 15 2014
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Magma
    A081580:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081580(n,k,5): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 6], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 6).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 5*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+5*x)^k/(1-x)^(k+1).
From Paul Barry, Aug 28 2008: (Start)
Number triangle T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*5^j.
Riordan array (1/(1-x), x*(1+5*x)/(1-x)). (End)
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 6). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(6*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 12*x + 36*x^2/2) = 1 + 13*x + 61*x^2/2! + 145*x^3/3! + 265*x^4/4! + 421*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n, k, 3) = A002532(n+1). - G. C. Greubel, May 26 2021

A081589 Third row of Pascal-(1,5,1) array A081580.

Original entry on oeis.org

1, 13, 61, 145, 265, 421, 613, 841, 1105, 1405, 1741, 2113, 2521, 2965, 3445, 3961, 4513, 5101, 5725, 6385, 7081, 7813, 8581, 9385, 10225, 11101, 12013, 12961, 13945, 14965, 16021, 17113, 18241, 19405, 20605, 21841, 23113, 24421, 25765, 27145, 28561, 30013, 31501
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Crossrefs

Programs

Formula

a(n) = 1 - 6*n + 18*n^2.
G.f.: (1+5*x)^2/(1-x)^3.
From Elmo R. Oliveira, Jun 06 2025: (Start)
E.g.f.: exp(x)*(1 + 12*x + 18*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)

A361731 Array read by descending antidiagonals. A(n, k) = hypergeom([-k, -3], [1], n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 7, 1, 1, 20, 25, 10, 1, 1, 35, 63, 46, 13, 1, 1, 56, 129, 136, 73, 16, 1, 1, 84, 231, 307, 245, 106, 19, 1, 1, 120, 377, 586, 593, 396, 145, 22, 1, 1, 165, 575, 1000, 1181, 1011, 595, 190, 25, 1, 1, 220, 833, 1576, 2073, 2076, 1585, 848, 241, 28, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2023

Keywords

Examples

			Array A(n, k) starts:
 [0] 1,  1,   1,   1,    1,    1,    1,     1, ...  A000012
 [1] 1,  4,  10,  20,   35,   56,   84,   120, ...  A000292
 [2] 1,  7,  25,  63,  129,  231,  377,   575, ...  A001845
 [3] 1, 10,  46, 136,  307,  586, 1000,  1576, ...  A081583
 [4] 1, 13,  73, 245,  593, 1181, 2073,  3333, ...  A081586
 [5] 1, 16, 106, 396, 1011, 2076, 3716,  6056, ...  A081588
 [6] 1, 19, 145, 595, 1585, 3331, 6049,  9955, ...  A081590
 [7] 1, 22, 190, 848, 2339, 5006, 9192, 15240, ...
.
Table T(n, k) starts:
 [0] 1;
 [1] 1,   1;
 [2] 1,   4,   1;
 [3] 1,  10,   7,    1;
 [4] 1,  20,  25,   10,    1;
 [5] 1,  35,  63,   46,   13,    1;
 [6] 1,  56, 129,  136,   73,   16,   1;
 [7] 1,  84, 231,  307,  245,  106,  19,   1;
 [8] 1, 120, 377,  586,  593,  396, 145,  22,  1;
 [9] 1, 165, 575, 1000, 1181, 1011, 595, 190, 25, 1;
		

Crossrefs

Columns: A000012, A016777, A100536.
Hypergeometric family: A000012 (m=0), A077028 (m=1), A361682 (m=2), this array (m=3).

Programs

  • Maple
    A := (n, k) -> 1 + (((k*n - 3*n + 9)*n*k + (2*n - 9)*n + 18)*n*k)/6;
    seq(print(seq(A(n, k), k = 0..7)), n = 0..7);
    # Alternative:
    ogf := n -> (1 + (n - 1) * x)^3 / (1 - x)^4:
    ser := n -> series(ogf(n), x, 12):
    row := n -> seq(coeff(ser(n), x, k), k = 0..9):
    seq(print(row(n)), n = 0..9);

Formula

A(n, k) = [x^k] (1 + (n - 1) * x)^3 / (1 - x)^4.
A(n, k) = 1 + (((k*n - 3*n + 9)*n*k + (2*n - 9)*n + 18)*n*k)/6.
T(n, k) = 1 + (((k*(n - k) - 3*k + 9)*k*(n - k) + (2*k - 9)*k + 18)*k*(n - k))/6.
Showing 1-3 of 3 results.