cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081655 2*5^n-1.

Original entry on oeis.org

1, 9, 49, 249, 1249, 6249, 31249, 156249, 781249, 3906249, 19531249, 97656249, 488281249, 2441406249, 12207031249, 61035156249, 305175781249, 1525878906249, 7629394531249, 38146972656249, 190734863281249
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Binomial transform of A081654. Inverse binomial transform of A081656.

Programs

Formula

G.f.: (1+3*x)/((1-5*x)*(1-x)).
E.g.f. 2*exp(5*x)-exp(x).
a(n) = 5*a(n-1)+4, with a(0)=1. - Vincenzo Librandi, Aug 01 2010

A094424 Array read by antidiagonals: Solutions to Schmidt's Problem.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 10, 1, 1, 8, 68, 56, 1, 1, 16, 424, 1732, 346, 1, 1, 32, 2576, 48896, 51076, 2252, 1, 1, 64, 15520, 1383568, 6672232, 1657904, 15184, 1, 1, 128, 93248, 39776000, 873960976, 1022309408, 57793316, 104960, 1, 1, 256, 559744, 1159151680, 116758856608, 615833930816, 176808084544, 2117525792, 739162, 1
Offset: 1

Views

Author

Ralf Stephan, May 16 2004

Keywords

Comments

T(r,k) satisfies sum[k=0,n, C(n,k)^r*C(n+k,k)^r] = sum[k=0,n, C(n,k)*C(n+k,k)*T(r,k)] for all n=0,1,2,3...

Examples

			Array begins:
  1,  1,     1,        1,            1,               1, ...
  1,  2,    10,       56,          346,            2252, ...
  1,  4,    68,     1732,        51076,         1657904, ...
  1,  8,   424,    48896,      6672232,      1022309408, ...
  1, 16,  2576,  1383568,    873960976,    615833930816, ...
  1, 32, 15520, 39776000, 116758856608, 371558588978432, ...
		

Crossrefs

Rows 2-5 are A000172, A000658, A092868, A379610.
Columns 2-3 seem to be A000079, A081656.

Programs

  • Mathematica
    eq[r_, n_] := eq[r, n] = Sum[Binomial[n, k]^r*Binomial[n + k, k]^r, {k, 0, n}] == Sum[Binomial[n, k]*Binomial[n + k, k]*t[r, k], {k, 0, n}]; c[r_, k_] := t[r, k] /. Solve[Table[eq[r, n], {n, 0, k}], t[r, k]] // First; lg = 10; m = Table[c[r, k], {r, 1, lg}, {k, 0, lg - 1}];
    Flatten[ Table[ Reverse @ Diagonal[ Reverse /@ m, k],{k, lg - 1, -lg + 1, -1}]][[1 ;; 55]] (* Jean-François Alcover, Jul 20 2011 *)
  • PARI
    A094424row(r,kmax)={ local(nmat,rhs,cv) ; nmat=matrix(kmax+1,kmax+1) ; rhs=matrix(kmax+1,1) ; for(n=0,kmax, for(k=0,kmax, nmat[n+1,k+1]=binomial(n,k)*binomial(n+k,k) ; ) ; rhs[n+1,1]=sum(i=0,n,binomial(n,i)^r*binomial(n+i,i)^r) ; ) ; cv=matsolve(nmat,rhs) ; } A094424(nmax)={ local(T,c) ; T=matrix(nmax,nmax) ; for(r=1,nmax, c=A094424row(r,nmax-1) ; for(i=1,nmax, T[r,i]=c[i,1] ; ) ; ) ; return(T) ; } { rmax=10 ; T=A094424(rmax) ; for(d=0,rmax-1, for(c=0,d, print1(T[d-c+1,c+1],",") ; ) ; ) ; } \\ R. J. Mathar, Oct 06 2006

Formula

Zudilin gives a complicated general formula involving binomial coefficients, thus proving that all T(r, k) are integers.

Extensions

More terms from R. J. Mathar, Oct 06 2006

A081657 2*7^n-3^n.

Original entry on oeis.org

1, 11, 89, 659, 4721, 33371, 234569, 1644899, 11523041, 80687531, 564891449, 3954476339, 27682042961, 193776426491, 1356441362729, 9495108670979, 66465818092481, 465260898834251, 3256826808400409, 22797789208484819
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Binomial transform of A081656.

Programs

  • Magma
    [2*7^n-3^n: n in [0..30]]; // Vincenzo Librandi, Dec 05 2012
  • Mathematica
    CoefficientList[Series[(1 + x) / ((1 - 7 x) (1 - 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 10 2013 *)

Formula

G.f.: (1+x)/((1-7*x)*(1-3*x)).
E.g.f. 2*exp(7*x)-exp(3*x).
a(0)=0, a(1)=11; for n>1, a(n) = 10*a(n-1) -21*a(n-2). - Vincenzo Librandi Aug 10 2013

A385178 Triangle T(n,k) read by rows in which the n-th diagonal lists the n-th differences of A001047, 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 3, 4, 5, 7, 10, 14, 19, 15, 22, 32, 46, 65, 31, 46, 68, 100, 146, 211, 63, 94, 140, 208, 308, 454, 665, 127, 190, 284, 424, 632, 940, 1394, 2059, 255, 382, 572, 856, 1280, 1912, 2852, 4246, 6305, 511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171
Offset: 0

Views

Author

Paul Curtz, Jun 20 2025

Keywords

Examples

			Triangle begins:
    0;
    1,   1;
    3,   4,    5;
    7,  10,   14,   19;
   15,  22,   32,   46,   65;
   31,  46,   68,  100,  146,  211;
   63,  94,  140,  208,  308,  454,  665;
  127, 190,  284,  424,  632,  940, 1394, 2059;
  255, 382,  572,  856, 1280, 1912, 2852, 4246,  6305;
  511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171;
  ...
		

Crossrefs

Columns k=0..2: A000225, A033484, A053209 (sans 1).
Diagonals: A001047, A027649, A053581 (sans 1), A291012 (sans 2).

Programs

  • Magma
    /* As triangle */ [[2^(n-k)*3^k - 2^k : k in [0..n]]: n in [0..9]]; // Vincenzo Librandi, Jun 27 2025
  • Maple
    T:= proc(n,k) option remember;
         `if`(n=k, 3^n-2^n, T(n, k+1)-T(n-1, k))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jun 24 2025
  • Mathematica
    t[n_, 0] := 3^n - 2^n; t[n_, k_] := t[n, k] = t[n + 1, k - 1] - t[n, k - 1]; Table[t[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 20 2025 *)

Formula

T(n,n) = 3^n - 2^n = A001047(n).
T(n,k) = T(n,k+1) - T(n-1,k) for 0 <= k < n.
T(n,k) = 2^(n-k)*3^k - 2^k = A036561(n,k) - A059268(n,k).
T(2n,n) = A248216(n+1).
Showing 1-4 of 4 results.