cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081698 Expansion of (1 - sqrt( 1 - 4*x*sqrt( 1 + 4*x )) )/( 2*x ).

Original entry on oeis.org

1, 3, 4, 21, 56, 282, 984, 4813, 19280, 93150, 403672, 1945954, 8845360, 42766292, 200419504, 974134461, 4659558048, 22785183670, 110564976792, 543935554390, 2667398588272, 13196971915628, 65238895435792, 324431740601618, 1614044041864800, 8063536826420460
Offset: 0

Views

Author

Emanuele Munarini, Apr 02 2003

Keywords

Crossrefs

Cf. A081696.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 3, 4, 21][n+1],
          (2*n*(n+1)*(3-2*n) *a(n-1) +4*n*(2*n-1)*(2*n-3) *a(n-2)
           +8*(2*n-3)*(8*n^2-16*n-15) *a(n-3)
           +16*(4*n-15)*(4*n-9)*(n+1) *a(n-4)) /(n^2*(n+1)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 13 2013
  • Mathematica
    a[n_] := Sum[Binomial[(k+1)/2, n-k]*Binomial[2*k, k]*4^(n-k)/(k+1), {k, 0, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 02 2015, after Vladimir Kruchinin *)
    CoefficientList[Series[(1-Sqrt[1-4x Sqrt[1+4x]])/(2x),{x,0,30}],x] (* Harvey P. Dale, Oct 30 2017 *)

Formula

G.f.: (1-sqrt(1-4*x*sqrt(1+4*x)))/(2*x).
a(n) = sum(k=0..n, (binomial((k+1)/2,n-k)*binomial(2*k,k)*4^(n-k))/(k+1)). [Vladimir Kruchinin, Mar 13 2013]
D-finite with recurrence: n*(n+1)*a(n) +2*n*(5*n-7)*a(n-1) +4*(2*n^2-13*n+12)*a(n-2) -8*(2*n-3)*(14*n-37)*a(n-3) +16*(-64*n^2+392*n-573)*a(n-4) -96*(4*n-13)*(4*n-19)*a(n-5)=0. - R. J. Mathar, Jan 23 2020