cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A035163 Composite numbers k, not a power of 2, such that the E(k) == 1 (mod k), where E(k) is the k-th Euler number (A000364).

Original entry on oeis.org

15, 91, 289, 319, 435, 561, 692, 703, 1016, 1105, 1369, 1495, 1729, 1885, 1891, 2105, 2465, 2701, 2755, 2821, 3367, 4371, 5551, 6409, 6601, 7456, 8224, 8569, 8695, 8911, 9088, 10585, 10621, 11305, 11849, 12121, 12403, 13981, 14065, 15051, 15841, 16471, 17104
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], CompositeQ[#] && #/2^IntegerExponent[#, 2] > 1 && Divisible[Abs[EulerE[2*#]] - 1, #] &] (* Amiram Eldar, Nov 26 2020 *)
  • PARI
    a000364(n)=subst(bernpol(2*n+1), 'x, 1/4)*4^(2*n+1)*(-1)^(n+1)/(2*n+1);
    lista(nn) = {forcomposite(n=1, nn, if ( n != 2^valuation(n, 2), if (Mod(a000364(n), n) == 1, print1(n, ", "));););} \\ Michel Marcus, Apr 18 2015

Extensions

More terms from Hans Havermann, Apr 07 2003
a(23)-a(43) from Amiram Eldar, Nov 26 2020

A069042 Numbers k such that A000364(k) == 1 (mod k^2).

Original entry on oeis.org

1, 2, 17, 37, 1153, 1303
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000], Divisible[Abs[EulerE[2*#]] - 1, #^2] &] (* Amiram Eldar, Jun 03 2017 *)
  • PARI
    is(k) = Mod(abs(eulerfrac(2*k)), k^2) == 1; \\ Jinyuan Wang, Mar 13 2025

Extensions

More terms from Hans Havermann, Apr 07 2003
a(1) prepended by Jinyuan Wang, Mar 13 2025

A287934 Composite numbers n such that E(n+1)+1 is divisible by n, where E(n) is the n-th Euler number (A122045).

Original entry on oeis.org

289, 341, 561, 1105, 1369, 1387, 1729, 2465, 2821, 4097, 5365, 6179, 6601, 8911, 9105, 9537, 10585, 12673, 14433, 14531, 15457, 15841, 28033, 29341, 33901, 41041, 41905, 42141, 46657, 48705, 52633, 52741, 62745, 63253, 63973, 75361, 80185, 82621, 99937
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2017

Keywords

Comments

Kummer proved in 1851 that E(2k + p - 1) == E(2k) (mod p) for k > 0 and all odd primes p. This sequence consists of composite numbers for which the congruence, with k=1, also holds. In terms of A000364, the sequence consists of composite odd numbers n that divide A000364((n + 1)/2) + (-1)^((n + 1)/2).

References

  • Jozsef Sandor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 5, p. 556.

Crossrefs

Programs

  • Mathematica
    a={}; For[n = 1, n < 100000, n++; If[!PrimeQ[n] && Divisible[EulerE[n + 1] + 1, n], a=AppendTo[a,n]]];a
    Select[Range[100000],CompositeQ[#]&&Divisible[EulerE[#+1]+1,#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 03 2019 *)
  • PARI
    e(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1);
    isok(n) = (((e(n+1)+1) % n) == 0);
    lista(nn) = forcomposite(n=1, nn, if (isok(n), print1(n, ", "))); \\ Michel Marcus, Jun 10 2017
Showing 1-3 of 3 results.