cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081762 Primes p such that p*(p-2) divides 2^(p-1)-1.

Original entry on oeis.org

3, 5, 17, 37, 257, 457, 1297, 2557, 4357, 6481, 8009, 11953, 26321, 44101, 47521, 47881, 49681, 57241, 65537, 74449, 84421, 97813, 141157, 157081, 165601, 225457, 278497, 310591, 333433, 365941, 403901, 419711, 476737, 557041, 560737, 576721, 1011961, 1033057
Offset: 1

Views

Author

Benoit Cloitre, Apr 09 2003

Keywords

Comments

Primes p such that p-2 divides 2^(p-1) - 1. The only member in A006512 is 5. - Robert Israel, Dec 03 2014
N=647089 is the smallest composite number such that (n-1)^2-1 divides 2^(n-1)-1. - M. F. Hasler, Jul 24 2015

Programs

  • Maple
    select(p -> isprime(p) and 2 &^ (p-1) - 1  mod (p-2) = 0, [seq(2*i+1,i=1..10^6)]);  # Robert Israel, Dec 03 2014
  • Mathematica
    Select[Prime[Range[2,81000]],PowerMod[2,#-1,#(#-2)]==1&] (* Harvey P. Dale, Sep 11 2023 *)
  • PARI
    lista(nn) = {forprime(p = 3, nn, if (! ((2^(p-1)-1) % (p*(p-2))), print1(p, ", "));)} \\ Michel Marcus, Dec 02 2013
    
  • Python
    from sympy import prime
    from gmpy2 import powmod
    A081762_list = [p for p in (prime(n) for n in range(2,10**5)) if powmod(2,p-1,p*(p-2)) == 1] # Chai Wah Wu, Dec 03 2014

Extensions

More terms from Michel Marcus, Dec 02 2013