A081858 Numbers k such that 2*k+1 divides 2^k-1.
0, 3, 8, 11, 15, 20, 23, 35, 36, 39, 44, 48, 51, 56, 63, 68, 75, 83, 95, 96, 99, 111, 116, 119, 120, 128, 131, 135, 140, 155, 156, 168, 170, 176, 179, 183, 191, 200, 204, 215, 216, 219, 224, 228, 231, 239, 243, 251, 260, 280, 284, 288, 296, 299, 300, 303, 308
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Join[{0}, Select[Range[300], PowerMod[2, #, 2*# + 1] === 1 &]] (* Amiram Eldar, Jun 02 2022 *)
-
PARI
isok(n) = !((2^n-1) % (2*n+1)); \\ Michel Marcus, Dec 04 2013
-
PARI
for(n=0,400,if(n%znorder(Mod(2,2*n+1))==0,print1(n","))) \\ Chris Boyd, Mar 16 2014, after Michael Somos in A002326
Formula
k such that A002326(k)|k: since 2^k == 1 mod 2*k+1, k must be a multiple of the order of 2 mod 2*k+1.
Extensions
Formula corrected by Chris Boyd, Mar 16 2014
Comments