cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A231917 Numbers n such that 16*n^2 + 10*n + 1 divides 2^n - 1.

Original entry on oeis.org

0, 11, 75, 156, 179, 215, 216, 239, 371, 431, 504, 551, 564, 624, 651, 711, 936, 999, 1040, 1076, 1296, 1304, 1416, 1680, 1884, 1911, 2079, 2324, 2615, 2696, 3176, 3224, 3236, 3500, 3696, 3780, 3879, 4040, 4044, 4215, 4340, 4368, 4431, 4599, 4604, 4859, 5019
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 15 2013

Keywords

Comments

The prime numbers of this sequence are in A231916.

Crossrefs

Subsequence of A081858. Supersequence of A231916.

Programs

  • Mathematica
    Prepend[Select[Range[5019], PowerMod[2, #, 16*#^2 + 10*# + 1] == 1 &], 0]

A247094 Integers of the form (2^k + 1)/(2k + 1).

Original entry on oeis.org

1, 2, 3, 5, 27, 565, 7085, 48771, 1266205, 9099507, 17602325, 128207979, 26494256091, 11147523830125, 84179432287299, 165269711096165, 281629680514649643, 4246732448623781667, 126774939137440139965, 1925041114036033717685, 14833445639443302757131
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 18 2014

Keywords

Comments

a(A103579(n)) is a subsequence.
Numbers n such that 2n + 1 divides 2^n + 1: 0, 1, 2, 5, 6, 9, 14, 18, 21, 26, 29, 30, 33, 41, 50, 53, ...

Examples

			1 is in this sequence because (2^1 + 1)/(2*1 + 1) = 1,
2 is in this sequence because (2^0 + 1)/(2*0 + 1) = 2,
3 is in this sequence because (2^5 + 1)/(2*5 + 1) = 3.
		

Crossrefs

Programs

  • PARI
    s=[]; for(k=0, 100, t=(2^k + 1)/(2*k + 1); if(type(t)=="t_INT", s=concat(s, t))); s=vecsort(s,,8) \\ Colin Barker, Nov 18 2014

Extensions

a(19) corrected by Colin Barker, Nov 18 2014

A233089 Numbers n such that 2n-1 and 2n+1 divide 2^n-1.

Original entry on oeis.org

8, 128, 228, 648, 3240, 5976, 13160, 23760, 23940, 24840, 32768, 37224, 78540, 82800, 139248, 166716, 238368, 278520, 280368, 288360, 516528, 633420, 664668, 731808, 734448, 1145520, 1211100, 1377240, 1425816, 1484568, 1627640, 2055060, 2131080, 2292780
Offset: 1

Views

Author

Michel Marcus, Dec 04 2013

Keywords

Comments

Intersection of A081856 and A081858.
Numbers n such that 4n^2-1 divides 2^n-1. - Charles R Greathouse IV, Dec 04 2013

Examples

			2^8-1=255 is divisible by 2*8-1=15 and by 2*8+1=17.
		

Programs

  • Mathematica
    Select[Range[23*10^5],PowerMod[2,#,2#+{1,-1}]=={1,1}&] (* Harvey P. Dale, Dec 19 2014 *)
  • PARI
    isok(n) = !((2^n-1) % (2*n-1)) && !((2^n-1) % (2*n+1));
    
  • PARI
    is(n)=Mod(2,4*n^2-1)^n==1 \\ Charles R Greathouse IV, Dec 04 2013

A247132 Numbers k such that 2k - 1 divides 2^k + 1.

Original entry on oeis.org

1, 194997, 1463649, 1957025, 4657005, 6464145, 17214725, 70930629, 76938345, 319359365, 336837501, 429872625, 486213525, 1343289717, 1831683645, 2163016845, 2430979425, 2950546137, 3463374005, 5031564525, 5608791441, 8993704797, 9596401485, 12556945401, 13492461125, 14559291285, 18429009725
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 20 2014

Keywords

Examples

			1 is in this sequence because (2^1 + 1)/(2*1 - 1) = 3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2000000] | Denominator((2^n + 1)/(2*n - 1)) eq 1];
    
  • Mathematica
    Select[Range[200000], IntegerQ[(2^# + 1) / (2 # - 1)] &] (* Vincenzo Librandi, Nov 20 2014 *)
  • PARI
    is(n)=Mod(2,2*n-1)^n==-1 \\ Charles R Greathouse IV, Nov 20 2014

Extensions

a(5)-a(27) from Charles R Greathouse IV, Nov 20 2014

A250203 Numbers n such that the Phi_n(2) is the product of exactly two primes and is divisible by 2n+1.

Original entry on oeis.org

11, 20, 23, 35, 39, 48, 83, 96, 131, 231, 303, 375, 384, 519, 771, 848, 1400, 1983, 2280, 2640, 2715, 3359, 6144, 7736, 7911, 11079, 13224, 16664, 24263, 36168, 130439, 406583
Offset: 1

Views

Author

Eric Chen, Mar 13 2015

Keywords

Comments

Here Phi_n is the n-th cyclotomic polynomial.
Is this sequence infinite?
Phi_n(2)/(2n+1) is only a probable prime for n > 16664.
a(33) > 2000000.
Subsequence of A005097 (2 * a(n) + 1 are all primes)
Subsequence of A081858.
2 * a(n) + 1 are in A115591.
Primes in this sequence are listed in A239638.
A085021(a(n)) = 2.
All a(n) are congruent to 0 or 3 (mod 4). (A014601)
All a(n) are congruent to 0 or 2 (mod 3). (A007494)
Except the term 20, all even numbers in this sequence are divisible by 8.

Examples

			Phi_11(2) = 23 * 89 and 23 = 2 * 11 + 1, so 11 is in this sequence.
Phi_35(2) = 71 * 122921 and 71 = 2 * 35 + 1, so 35 is in this sequence.
Phi_48(2) = 97 * 673 and 97 = 2 * 48 + 1, so 48 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[2*# + 1] && PowerMod[2, #, 2*# + 1] == 1 &&
    PrimeQ[Cyclotomic[#, 2]/(2*#+1)] &]
  • PARI
    isok(n) = if (((x=polcyclo(n, 2)) % (2*n+1) == 0) && (omega(x) == 2), print1(n, ", ")); \\ Michel Marcus, Mar 13 2015

A343679 Lucasian pseudoprimes: composite numbers k such that 2^(k-1) == k+1 (mod k(2k+1)).

Original entry on oeis.org

150851, 452051, 1325843, 1441091, 4974971, 5016191, 15139199, 19020191, 44695211, 101276579, 119378351, 128665319, 152814531, 187155383, 203789951, 223782263, 307367171, 387833531, 392534231, 470579831, 505473263, 546748931, 626717471, 639969891, 885510239, 974471243, 1147357559
Offset: 1

Views

Author

Thomas Ordowski, Apr 26 2021

Keywords

Comments

These are pseudoprimes k == 3 (mod 4) such that 2k+1 is prime.
Proof. Let q = 2k+1 be prime, where k == 3 (mod 4) is a pseudoprime. We have q == 7 (mod 8), so 2 is a square mod q, which gives 2^((q-1)/2) == 1 (mod q), by Euler's criterion. Thus, 2^k == 1 (mod q), which implies 2^(k-1) == (q+1)/2 (mod q), so that 2^(k-1) == k+1 (mod q). The conclusion that 2^(k-1) == k+1 (mod kq) follows from the assumption that k is a pseudoprime and from the Chinese remainder theorem. - Carl Pomerance (in a letter to the author), Apr 14 2021
Note that if p is a Lucasian prime, i.e., p == 3 (mod 4) with 2p+1 prime; then (2^p-1)/(2p+1) == 1 (mod p), hence 2^p-2p-2 == 0 (mod p(2p+1)), so 2^(p-1) == p+1 (mod p(2p+1)).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7], CompositeQ[#] && PowerMod[2, #-1, #*(2*#+1)] == #+1 &] (* Amiram Eldar, Apr 26 2021 *)

Extensions

More terms from Amiram Eldar, Apr 26 2021

A385326 The number of positive k <= 2*n + 1 such that 2*n + 1 divides (2^k + 2*n + 1)^2 - 1.

Original entry on oeis.org

1, 3, 2, 2, 3, 2, 2, 7, 4, 2, 7, 2, 2, 3, 2, 6, 6, 5, 2, 6, 4, 6, 7, 2, 2, 12, 2, 5, 6, 2, 2, 21, 10, 2, 6, 2, 8, 7, 5, 2, 3, 2, 21, 6, 8, 15, 18, 5, 4, 6, 2, 2, 17, 2, 6, 6, 8, 5, 19, 9, 2, 12, 2, 18, 18, 2, 14, 7, 4, 2, 6, 4, 10, 7, 2, 10, 12, 15, 6, 6, 4, 2, 16, 2, 2, 19, 2, 5, 6, 2, 2, 6, 10, 9, 21, 2, 4, 32, 2, 2, 6
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jun 25 2025

Keywords

Examples

			1 is the term because 2*0 + 1 = 1 is divisor of (2^1 + 2*0 + 1)^2 - 1 = 3^2 - 1 = 8.
		

Crossrefs

Cf. A003462 (numbers m > 0 such that a(m) = 3), A005384 (primes p such that a(p) = 2), A005408 (odd numbers), A076481 (primes q such that a(q) = 3), A081858 (numbers k numbers k >= 0 such that 2k + 1 divides 2^k - 1), A102781 (numbers k such that 2k + 1 divides (2^k + 2*k + 1)^2 - 1), A224486 (numbers k such that 2k + 1 divides 2^k + 1).

Programs

  • Magma
    [#[k: k in [1..2*n+1] | ((2^k+2*n+1)^2 - 1) mod (2*n + 1) eq 0]: n in [0..100]];
    
  • Mathematica
    a[n_]:=Length[Select[Range[2n+1],Divisible[(2^#+2n+1)^2-1,2n+1] &]]; Array[a,101,0] (* Stefano Spezia, Jun 25 2025 *)
  • PARI
    a(n) = sum(k=1, 2*n+1, !Mod((2^k + 2*n + 1)^2 - 1, 2*n + 1)); \\ Michel Marcus, Jun 25 2025
Showing 1-7 of 7 results.