cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A326048 a(n) = gcd(n-A050449(n), A082052(n)-n), where A050449 and A082052 give the sum of divisors of the form 4k+1, and not of that form, respectively.

Original entry on oeis.org

1, 1, 2, 1, 1, 5, 6, 1, 1, 2, 10, 1, 1, 1, 3, 1, 1, 1, 18, 2, 1, 1, 22, 1, 1, 2, 1, 27, 1, 12, 30, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 42, 1, 3, 5, 46, 1, 1, 1, 3, 2, 1, 4, 1, 1, 1, 2, 58, 6, 1, 1, 2, 1, 1, 4, 66, 10, 1, 4, 70, 1, 1, 2, 2, 3, 1, 4, 78, 2, 1, 2, 82, 2, 1, 5, 3, 1, 1, 6, 7, 1, 1, 1, 1, 5, 1, 1, 14, 1, 1, 12, 102, 2, 9
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326049(n), A326050(n)) = gcd(n-A050449(n), A082052(n)-n).
a(2n-1) = A326047(2n-1) for all n.

A326050 a(n) = A082052(n) - n, where A082052 is the sum of divisors of n that are not of the form 4k+1.

Original entry on oeis.org

-1, 0, 0, 2, -5, 5, 0, 6, -6, 2, 0, 15, -13, 9, 3, 14, -17, 11, 0, 16, -11, 13, 0, 35, -25, 2, 3, 27, -29, 36, 0, 30, -19, 2, 7, 45, -37, 21, 3, 44, -41, 32, 0, 39, -27, 25, 0, 75, -42, 12, 3, 32, -53, 56, 11, 63, -35, 2, 0, 102, -61, 33, 10, 62, -65, 44, 0, 40, -43, 68, 0, 113, -73, 2, 18, 63, -59, 76, 0, 100, -51, 2, 0, 118, -85, 45, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[n],Mod[#-1,4]!=0&]]-n,{n,90}] (* Harvey P. Dale, Jul 12 2024 *)
  • PARI
    A082052(n) = sumdiv(n, d, if(1!=(d%4), d));
    A326050(n) = (A082052(n)-n);

Formula

a(n) = A082052(n) - n.
a(n) = A326049(n) - A033879(n).

A082053 Sum of divisors of n that are not of the form 4k+3.

Original entry on oeis.org

1, 3, 1, 7, 6, 9, 1, 15, 10, 18, 1, 25, 14, 17, 6, 31, 18, 36, 1, 42, 22, 25, 1, 57, 31, 42, 10, 49, 30, 54, 1, 63, 34, 54, 6, 88, 38, 41, 14, 90, 42, 86, 1, 73, 60, 49, 1, 121, 50, 93, 18, 98, 54, 90, 6, 113, 58, 90, 1, 150, 62, 65, 31, 127, 84, 130, 1, 126, 70, 102, 1, 192
Offset: 1

Views

Author

Ralf Stephan, Apr 02 2003

Keywords

Comments

a(A002145(n))=1.

Crossrefs

Programs

  • Mathematica
    sd[n_]:= Total[Select[Divisors[n], !IntegerQ[(# - 3) / 4]&]]; Array[sd, 100] (* Vincenzo Librandi, May 17 2013 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,if(d%4!=3,d))","))

Formula

G.f.: Sum_{k>=1} x^k*(1 + 2*x^k + 4*x^(3*k) + 3*x^(4*k) + 2*x^(5*k))/(1 - x^(4*k))^2. - Ilya Gutkovskiy, Sep 12 2019
Showing 1-3 of 3 results.