cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082095 A 2nd order recursion: a(1)=a(2)=1, a(n) = prime(a(n-2)) + pi(a(n-1)) = A000040(a(n-2)) + A000720(a(n-1)).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 15, 25, 56, 113, 293, 679, 2036, 5389, 18447, 54920, 211347, 697252, 2974827, 10741681, 50245401, 196570892, 998427899, 4197026430, 22963115248, 103007695615, 603032992418, 2870053925682, 17876478098333, 89829672327175, 592418610490868, 3129958832408526, 21764504060699104, 120464619408398977, 880014298908322768, 5086633622697900677
Offset: 1

Views

Author

Labos Elemer, Apr 11 2003

Keywords

Crossrefs

Programs

  • Magma
    f:= func< n | n lt 4 select Fibonacci(n) else NthPrime(Self(n-2)) + #PrimesUpTo(Self(n-1)) >;
    [f(n): n in [1..25]]; // G. C. Greubel, Aug 30 2019
  • Mathematica
    a[n_]:= a[n]= If[n<4, Fibonacci[n], Prime[a[n-2]] +PrimePi[a[n-1]]]; Table[a[n], {n, 30}] (* modified by G. C. Greubel, Aug 30 2019 *)
    nxt[{a_,b_}]:={b,Prime[a]+PrimePi[b]}; NestList[nxt,{1,1},30][[All,1]] (* The program generates the first 31 terms of the sequence. *) (* Harvey P. Dale, May 16 2020 *)
  • PARI
    a(n) = if (n<3, 1, prime(a(n-2)) + primepi(a(n-1))); \\ Michel Marcus, Aug 30 2019
    
  • PARI
    first(n) = {my(res = vector(max(3, n)), pr = vector(n)); res[1] = res[2] = 1; res[3] = 2; for(i = 1, 3, print1(res[i]", ")); pr[1] = pr[2] = 2; pr[3] = 3; for(i = 4, n, pr[i] = prime(res[i-2]); res[i] = pr[i] + res[i-3] + primedist(pr[i-1], res[i-1]); print1(res[i]", ")); res}
    primedist(p1, p2) = {my(res = 0); forprime(p = p1 + 1, p2, res++); res} \\ David A. Corneth, Aug 30 2019
    

Extensions

a(26) from David A. Corneth, Aug 30 2019
a(27)-a(30) from G. C. Greubel, Aug 30 2019
a(31)-a(36) from Chai Wah Wu, Sep 18 2019