cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082133 Expansion of e.g.f. x*exp(2*x)*cosh(x).

Original entry on oeis.org

0, 1, 4, 15, 56, 205, 732, 2555, 8752, 29529, 98420, 324775, 1062888, 3454373, 11160268, 35872275, 114791264, 365897137, 1162261476, 3680494655, 11622614680, 36611236221, 115063885244, 360882185515, 1129718145936
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Comments

Binomial transform of A057711. 2nd binomial transform of (0,1,0,3,0,5,0,7,...).

Crossrefs

Programs

  • GAP
    List([0..10^2], n->Sum([1..n], k->Sum([1..3], j->Stirling2(n,j)))); # Muniru A Asiru, Feb 06 2018
  • Magma
    [n*(1^(n-1) + 3^(n-1))/2: n in [0..30]]; // G. C. Greubel, Feb 05 2018
    
  • Maple
    with (combinat):seq(sum(sum(stirling2(n, j),j=1..3), k=1..n), n=0..24); # Zerinvary Lajos, Dec 04 2007
  • Mathematica
    With[{nn=30},CoefficientList[Series[x Exp[2x]Cosh[x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 30 2012 *)
    Table[n*(1^(n-1) + 3^(n-1))/2, {n,0,30}] (* G. C. Greubel, Feb 05 2018 *)
    Table[Sum[Sum[StirlingS2[n,j], {j,1,3}], {k,1,n}], {n,0,30}] (* G. C. Greubel, Feb 07 2018 *)
  • PARI
    for(n=0,30, print1(n*(1^(n-1) + 3^(n-1))/2, ", ")) \\ G. C. Greubel, Feb 05 2018
    

Formula

a(n) = n*(1^(n-1) + 3^(n-1))/2.
E.g.f.: x*exp(2x)*cosh(x).
G.f.: x*(1-4*x+5*x^2) / ( (3*x-1)^2*(x-1)^2 ). - R. J. Mathar, Nov 24 2012
a(n) = Sum_{k=1..n} (Sum_{j=1..3} Stirling2(n,j)). - G. C. Greubel, Feb 07 2018

Extensions

Definition clarified by Harvey P. Dale, Apr 30 2012