cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082171 A subclass of quasi-acyclic automata with 2 inputs, n transient and k absorbing labeled states; square array T(n,k) read by descending antidiagonals (n >= 0 and k >= 1).

Original entry on oeis.org

1, 1, 3, 1, 8, 39, 1, 15, 176, 1206, 1, 24, 495, 7784, 69189, 1, 35, 1104, 29430, 585408, 6416568, 1, 48, 2135, 84600, 2791125, 67481928, 881032059, 1, 63, 3744, 204470, 9841728, 389244600, 11111547520, 168514815360, 1, 80, 6111, 437616, 28569765, 1627740504, 75325337235, 2483829653544, 42934911510249
Offset: 0

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

Array read by descending antidiagonals: (0,1), (0,2), (1,1), (0,3), ...
The first column is A082159; i.e., T(n,k=1) = A082159(n). [The number n of transient states in the name of square array T(n,k) does not include the pre-dead transient state, which is, however, included in the name of A082159. See Section 3.1 in Liskovets (2006). - Petros Hadjicostas, Mar 07 2021]

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 1) begins:
          1,           1,           1,          1,        1, ...;
          3,           8,          15,         24,       35, ...;
         39,         176,         495,       1104,     2135, ...;
       1206,        7784,       29430,      84600,   204470, ...;
      69189,      585408,     2791125,    9841728, 28569765, ...;
    6416568,    67481928,   389244600, 1627740504, ...;
  881032059, 11111547520, 75325337235, ...;
  ...
Triangular array A(n,k) = T(k-1, n-k+1) (with rows n >= 1 and columns k = 1..n), read from the antidiagonals downwards of square array T:
  1;
  1,  3,
  1,  8,   39;
  1, 15,  176,  1206;
  1, 24,  495,  7784,   69189;
  1, 35, 1104, 29430,  585408,  6416568;
  1, 48, 2135, 84600, 2791125, 67481928, 881032059;
  ...
		

Crossrefs

Programs

  • Magma
    function A(n,k)
      if n eq 0 then return 1;
      else return (&+[(-1)^(n-j+1)*Binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k): j in [0..n-1]]);
      end if;
    end function;
    A082171:= func< n,k | A(k,n-k+1) >;
    [A082171(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
    
  • Mathematica
    T[0, ] = 1; T[n, k_] := T[n, k] = Sum[Binomial[n, i] (-1)^(n - i - 1)*((i + k + 1)^2 - 1)^(n - i)*T[i, k], {i, 0, n - 1}];
    Table[T[n - k - 1, k], {n, 1, 10}, {k, n - 1, 1, -1}] // Flatten (* Jean-François Alcover, Aug 29 2019 *)
  • PARI
    lista(nn,kk)={my(T=matrix(nn+1,kk)); for(n=1, nn+1, for(k=1, kk, T[n,k] = if(n==1, 1, sum(i=0,n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + k + 1)^2 - 1)^(n-i-1)*T[i+1, k])))); T;} \\ Petros Hadjicostas, Mar 07 2021
    
  • SageMath
    @CachedFunction
    def A(n,k):
        if n==0: return 1
        else: return sum((-1)^(n-j+1)*binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k) for j in range(n))
    def A082171(n,k): return A(k,n-k+1)
    flatten([[A082171(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024

Formula

T(n, k) = S_2(n, k) where S_2(0, k) := 1 and S_2(n, k) := Sum_{i=0..n-1} binomial(n, i)*(-1)^(n-i-1)*((i + k + 1)^2 - 1)^(n-i)*S_2(i, k) for n > 0.

Extensions

Name clarified by Petros Hadjicostas, Mar 07 2021