cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082289 Expansion of x^4*(2+x)/((1+x)*(1-x)^5).

Original entry on oeis.org

2, 9, 26, 59, 116, 206, 340, 530, 790, 1135, 1582, 2149, 2856, 3724, 4776, 6036, 7530, 9285, 11330, 13695, 16412, 19514, 23036, 27014, 31486, 36491, 42070, 48265, 55120, 62680, 70992, 80104, 90066, 100929, 112746, 125571, 139460, 154470
Offset: 4

Views

Author

Michael Somos, Apr 07 2003

Keywords

Crossrefs

Cf. A045947 (which contains the first differences). - Bruno Berselli, Aug 26 2011

Programs

  • Magma
    [(1/96)*(2*(n-2)*n*(3*n^2-10*n+4)+3*(-1)^n-3): n in [4..50]]; // Vincenzo Librandi, Aug 29 2011
  • Mathematica
    Drop[CoefficientList[Series[x^4(2+x)/((1+x)(1-x)^5),{x,0,50}],x],4] (* or *) LinearRecurrence[{4,-5,0,5,-4,1},{2,9,26,59,116,206},50] (* Harvey P. Dale, Aug 26 2013 *)
  • PARI
    a(n)=polcoeff(if(n>0,x^4*(2+x)/((1+x)*(1-x)^5),x*(1+2*x)/((1+x)*(1-x)^5))+x*O(x^abs(n)),abs(n))
    

Formula

G.f.: x^4*(2+x)/((1+x)*(1-x)^5).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) + 3. If sequence is also defined for n <= 3 by this equation, then a(n)=0 for 0 <= n <= 3 and a(n) = A070893(-n) for n < 0.
a(n) = A082290(2*n-7).
a(n) = (1/96)*(2*(n-2)*n*(3*n^2 - 10*n + 4) + 3*(-1)^n - 3). a(n) - a(n-2) = A006002(n-3) for n > 5. - Bruno Berselli, Aug 26 2011
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6); a(4)=2, a(5)=9, a(6)=26, a(7)=59, a(8)=116, a(9)=206. - Harvey P. Dale, Aug 26 2013