cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082290 Expansion of (1+x+x^2)/((1+x^2)*(1+x)^4*(1-x)^5).

Original entry on oeis.org

1, 2, 6, 9, 19, 26, 46, 59, 94, 116, 172, 206, 290, 340, 460, 530, 695, 790, 1010, 1135, 1421, 1582, 1946, 2149, 2604, 2856, 3416, 3724, 4404, 4776, 5592, 6036, 7005, 7530, 8670, 9285, 10615, 11330, 12870, 13695, 15466, 16412, 18436, 19514, 21814, 23036
Offset: 0

Views

Author

Michael Somos, Apr 07 2003

Keywords

Examples

			G.f. = 1 + 2*x + 6*x^2 + 9*x^3 + 19*x^4 + 26*x^5 + 46*x^6 + 59*x^7 + ...
		

Crossrefs

Programs

  • Magma
    [(6*n^4 +108*n^3 +666*n^2 +1620*n +1251 +(4*n^3 +54*n^2 +236*n +333)*(-1)^n -48*(-1)^Floor((6*n -1 +(-1)^n)/4))/1536: n in [0..50]]; // Vincenzo Librandi, Oct 23 2014
  • Mathematica
    Table[(6 n^4 + 108 n^3 + 666 n^2 + 1620 n + 1251 + (4 n^3 + 54 n^2 + 236 n + 333) (-1)^n - 48 (-1)^((6 n - 1 + (-1)^n)/4))/1536, {n, 0, 50}] (* after Luce ETIENNE; or, by definition: *) CoefficientList[Series[(1 + x + x^2)/((1 + x^2)*(1 + x)^4*(1 - x)^5), {x, 0, 50}], x] (* Bruno Berselli, Oct 26 2014 *)
  • PARI
    {a(n) = if( n<-8, a(-9-n), polcoeff( (1 + x + x^2) / ((1 + x^2) *(1 + x)^4 * (1 - x)^5) + x * O(x^n), n))};
    

Formula

Euler transform of length 4 sequence [ 2, 3, -1, 1]. - Michael Somos, Feb 15 2006
G.f.: (1 + x + x^2) / ((1 + x^2) * (1 + x)^4 * (1 - x)^5).
a(n) = 3*a(n-2) - 2*a(n-4) - 2*a(n-6) + 3*a(n-8) - a(n-10) + 3.
a(n) = a(-9-n) for all n in Z.
a(2*n) = A070893(n+1). a(2*n + 1) = A082289(n+4).
a(n) = (6*n^4+108*n^3+666*n^2+1620*n+1251+(4*n^3+54*n^2+236*n+333)*(-1)^n-48*(-1)^((6*n-1+(-1)^n)/4))/1536. - Luce ETIENNE, Oct 23 2014