A082301 G.f.: (1 - 4*x - sqrt(16*x^2 - 12*x + 1))/(2*x).
1, 5, 30, 205, 1530, 12130, 100380, 857405, 7503330, 66931030, 606337380, 5563370130, 51594699780, 482860844580, 4554484964280, 43252833007005, 413224841606130, 3968768817574030, 38297678538914580, 371128975862945030
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
Programs
-
GAP
Concatenation([1],List([1..20],n->(1/n)*Sum([0..n],k->5^k*Binomial(n,k)*Binomial(n,k-1)))); # Muniru A Asiru, Apr 05 2018
-
Magma
Q:=Rationals(); R
:=PowerSeriesRing(Q, 40); Coefficients(R!((1 -4*x-Sqrt(16*x^2-12*x+1))/(2*x))) // G. C. Greubel, Feb 10 2018 -
Maple
A082301_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1; for w from 1 to n do a[w] := 5*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od;convert(a,list)end: A082301_list(19); # Peter Luschny, May 19 2011 a := n -> `if`(n=0, 1, 5*hypergeom([1 - n, -n], [2], 5)): seq(simplify(a(n)), n=0..19); # Peter Luschny, May 22 2017
-
Mathematica
Table[SeriesCoefficient[(1-4*x-Sqrt[16*x^2-12*x+1])/(2*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
PARI
a(n)=if(n<1,1,sum(k=0,n,5^k*binomial(n,k)*binomial(n,k-1))/n)
-
PARI
x='x+O('x^99); Vec((1-4*x-(16*x^2-12*x+1)^(1/2))/(2*x)) \\ Altug Alkan, Apr 04 2018
Formula
a(0)=1; for n > 0, a(n) = (1/n)*Sum_{k=0..n} 5^k*C(n, k)*C(n, k-1).
From Paul Barry, Oct 22 2009: (Start)
D-finite with recurrence: a(n) = if(n=0, 1, if(n=1, 5, 6*((2n-1)/(n+1))*a(n-1)-16*((n-2)/(n+1))*a(n-2))).
a(n) = A078009(n)*(5 - 4*0^n). (End)
a(n) ~ sqrt(10 + 6*sqrt(5))*(6 + 2*sqrt(5))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012. Equivalently, a(n) ~ 5^(1/4) * 2^(2*n) * phi^(2*n + 1) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
a(n) = 5*hypergeom([1 - n, -n], [2], 5) for n > 0. - Peter Luschny, May 22 2017
G.f.: 1/(1 - 4*x - x/(1 - 4*x - x/(1 - 4*x - x/(1 - 4*x - x/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Apr 04 2018
Comments