cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A071870 Numbers k such that gpf(k) > gpf(k+1) > gpf(k+2) where gpf(k) denotes the largest prime factor of k.

Original entry on oeis.org

13, 14, 34, 37, 38, 43, 61, 62, 73, 79, 86, 94, 103, 118, 122, 123, 142, 151, 152, 157, 158, 163, 173, 185, 193, 194, 202, 206, 214, 218, 223, 229, 241, 254, 257, 258, 271, 277, 278, 283, 284, 295, 298, 302, 313, 317, 318, 321, 322, 326, 331, 334, 341, 373
Offset: 1

Views

Author

Benoit Cloitre, Jun 09 2002

Keywords

Comments

Erdős conjectured that this sequence is infinite.
Balog (2001) proved that this sequence is infinite. - Amiram Eldar, Aug 02 2020

Examples

			13 is a term since gpf(13) = 13, gpf(14) = 7, gpf(15) = 5, and 13 > 7 > 5.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[400], FactorInteger[#][[-1, 1]] >  FactorInteger[# + 1][[-1, 1]] > FactorInteger[# + 2][[-1, 1]] &] (* Jean-François Alcover, Jun 17 2013 *)
  • PARI
    for(n=2,500,if(sign(component(component(factor(n),1),omega(n))-component(component(factor(n+1),1),omega(n+1)))+sign(component(component(factor(n+1),1),omega(n+1))-component(component(factor(n+2),1),omega(n+2)))==2,print1(n,",")))
    
  • PARI
    gpf(n) = vecmax(factor(n)[,1]);
    isok(k) = (gpf(k) > gpf(k+1)) && (gpf(k+1) > gpf(k+2)); \\ Michel Marcus, Nov 02 2020
    
  • Python
    from sympy import factorint
    A071870_list, p, q, r = [], 1, 2, 3
    for n in range(2,10**4):
        p, q, r = q, r, max(factorint(n+2))
        if p > q > r:
            A071870_list.append(n) # Chai Wah Wu, Jul 24 2017

A082417 Numbers k such that P(k) < P(k+1) > P(k+2), where P(k) is the largest prime factor of k (A006530).

Original entry on oeis.org

2, 4, 6, 10, 12, 16, 18, 22, 25, 28, 30, 33, 36, 40, 42, 46, 48, 50, 52, 54, 58, 60, 64, 66, 68, 70, 72, 75, 78, 82, 85, 88, 93, 96, 98, 100, 102, 106, 108, 110, 112, 115, 117, 121, 126, 128, 130, 133, 136, 138, 141, 145, 148, 150, 154, 156, 160, 162, 166, 172, 178, 180, 182
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2003

Keywords

References

  • Antal Balog, On the largest prime factor of consecutive integers, Abstracts Amer. Math. Soc., 25 (No. 2, 2002), p. 337, #975-11-76.

Crossrefs

Programs

Formula

a(n) = A100392(n) - 1. - T. D. Noe, Nov 26 2007

A100390 Numbers n where A006530 has a local minimum.

Original entry on oeis.org

4, 6, 8, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 42, 45, 48, 50, 52, 54, 56, 60, 64, 66, 68, 70, 72, 75, 77, 81, 84, 88, 90, 96, 98, 100, 102, 105, 108, 110, 112, 114, 117, 120, 125, 128, 130, 132, 135, 138, 140, 144, 147, 150, 154, 156, 160, 162, 165, 168, 175, 180
Offset: 1

Views

Author

Labos Elemer, Dec 14 2004

Keywords

Comments

Powers of 2 and mostly largest powers of larger primes belong here.

Examples

			Let gpf(n) = A006530(n). 18 is in the sequence because gpf(17) = 17 > gpf(18) = 3 < gpf(19) = 19.
		

Crossrefs

Cf. A006530.

Programs

  • Mathematica
    mxp[x_] := Max[FactorInteger[x][[All, 1]]]; ta = {{0}}; Do[s1 = mxp[n - 1]; s = mxp[n]; s2 = mxp[n + 1]; If[Greater[s1, s] && Greater[s2, s], Print[{n, {s1, s, s2}}]; ta = Append[ta, n]], {n, 1, 512}]; ta = Delete[ta, 1] (* Original program edited by Michael De Vlieger, Mar 26 2017 *)
    With[{n = 181}, Select[MapIndexed[{First@ #2 + 1, Differences@ #1} &, Partition[Array[FactorInteger[#][[-1, 1]] &, n], 3, 1]], Apply[And[#1 < 0, #2 > 0] &, Last@ #] &][[All, 1]]] (* Michael De Vlieger, Mar 26 2017 *)

Formula

a(n) = A082418(n) + 1. - T. D. Noe, Nov 26 2007
Showing 1-3 of 3 results.