cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A071869 Numbers k such that gpf(k) < gpf(k+1) < gpf(k+2) where gpf(k) denotes the largest prime factor of k.

Original entry on oeis.org

8, 9, 20, 21, 24, 27, 32, 45, 56, 57, 77, 81, 84, 90, 91, 92, 105, 114, 120, 125, 132, 135, 140, 144, 147, 165, 168, 169, 170, 171, 175, 176, 177, 189, 200, 204, 212, 216, 220, 221, 225, 231, 234, 235, 247, 252, 260, 261, 275, 288, 289, 300, 315, 324, 345, 354
Offset: 1

Views

Author

Benoit Cloitre, Jun 09 2002

Keywords

Comments

Erdős and Pomerance showed in 1978 that this sequence is infinite.

Crossrefs

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; ind = Position[Differences[Array[gpf, 350, 2]], ?(# > 0 &)] // Flatten; ind[[Position[Differences[ind], 1] // Flatten]] + 1 (* _Amiram Eldar, Jun 05 2022 *)
  • PARI
    for(n=2,500,if(sign(component(component(factor(n),1),omega(n))-component(component(factor(n+1),1),omega(n+1)))+sign(component(component(factor(n+1),1),omega(n+1))-component(component(factor(n+2),1),omega(n+2)))==-2,print1(n,",")))
    
  • Python
    from sympy import factorint
    A071869_list, p, q, r = [], 1, 2, 3
    for n in range(2,10**4):
        p, q, r = q, r, max(factorint(n+2))
        if p < q < r:
            A071869_list.append(n) # Chai Wah Wu, Jul 24 2017

Formula

a(n) = A079747(n+1) - 1. - T. D. Noe, Nov 26 2007

A082417 Numbers k such that P(k) < P(k+1) > P(k+2), where P(k) is the largest prime factor of k (A006530).

Original entry on oeis.org

2, 4, 6, 10, 12, 16, 18, 22, 25, 28, 30, 33, 36, 40, 42, 46, 48, 50, 52, 54, 58, 60, 64, 66, 68, 70, 72, 75, 78, 82, 85, 88, 93, 96, 98, 100, 102, 106, 108, 110, 112, 115, 117, 121, 126, 128, 130, 133, 136, 138, 141, 145, 148, 150, 154, 156, 160, 162, 166, 172, 178, 180, 182
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2003

Keywords

References

  • Antal Balog, On the largest prime factor of consecutive integers, Abstracts Amer. Math. Soc., 25 (No. 2, 2002), p. 337, #975-11-76.

Crossrefs

Programs

Formula

a(n) = A100392(n) - 1. - T. D. Noe, Nov 26 2007

A082422 Numbers n such that P(n) > P(n+2) > P(n+1), where P(n) = largest prime factor of n (A006530).

Original entry on oeis.org

7, 19, 23, 26, 31, 47, 53, 67, 74, 76, 83, 89, 97, 109, 113, 119, 124, 127, 131, 134, 139, 146, 159, 167, 174, 181, 183, 188, 199, 207, 211, 215, 219, 233, 244, 246, 251, 259, 263, 274, 287, 293, 303, 307, 314, 323, 327, 337, 339, 349, 353, 359, 362, 367, 379, 383, 386
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2003

Keywords

References

  • Antal Balog, On the largest prime factor of consecutive integers, Abstracts Amer. Math. Soc., 25 (No. 2, 2002), p. 337, #975-11-76.

Crossrefs

Programs

A079747 Numbers k such that gpf(k-1) < gpf(k) < gpf(k+1), where gpf(k) is the greatest prime factor of k (A006530).

Original entry on oeis.org

2, 9, 10, 21, 22, 25, 28, 33, 46, 57, 58, 78, 82, 85, 91, 92, 93, 106, 115, 121, 126, 133, 136, 141, 145, 148, 166, 169, 170, 171, 172, 176, 177, 178, 190, 201, 205, 213, 217, 221, 222, 226, 232, 235, 236, 248, 253, 261, 262, 276, 289, 290, 301, 316, 325, 346
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 10 2003

Keywords

Comments

Numbers k such that A079748(k-1) > 1.

Examples

			k=25: 25-1 = 24 = 3*2^3, 25 = 5^2 and 25+1 = 26 = 13*2, therefore 25 is a term (3 < 5 < 13).
		

Crossrefs

Programs

Formula

a(n) = A071869(n-1) + 1. - T. D. Noe, Nov 26 2007

A082418 Numbers n such that P(n) > P(n+1) < P(n+2), where P(n) = largest prime factor of n (A006530).

Original entry on oeis.org

3, 5, 7, 11, 15, 17, 19, 23, 26, 29, 31, 35, 39, 41, 44, 47, 49, 51, 53, 55, 59, 63, 65, 67, 69, 71, 74, 76, 80, 83, 87, 89, 95, 97, 99, 101, 104, 107, 109, 111, 113, 116, 119, 124, 127, 129, 131, 134, 137, 139, 143, 146, 149, 153, 155, 159, 161, 164, 167, 174, 179, 181, 183
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2003

Keywords

References

  • Antal Balog, On the largest prime factor of consecutive integers, Abstracts Amer. Math. Soc., 25 (No. 2, 2002), p. 337, #975-11-76.

Crossrefs

Programs

Formula

a(n) = A100390(n) - 1. - T. D. Noe, Nov 26 2007

A100385 a(n) is the least number x >= 2 such that for m=x to x+n-1, A006530(m) decreases.

Original entry on oeis.org

2, 3, 13, 13, 491, 1851, 12721, 12721, 109453, 586951, 120797465, 624141002, 4044619541, 267793490438, 315400191511, 1285600699441
Offset: 1

Views

Author

Labos Elemer, Dec 09 2004

Keywords

Comments

A006530(m) is the largest prime factor of m.
a(15) > 3*10^11. - Donovan Johnson, Oct 24 2009
a(17) > 7*10^12. - Giovanni Resta, May 04 2017

Examples

			a(5)=491 because the largest prime factors of 491,492,493,494,495 are 491,41,29,19,11.
		

Crossrefs

Programs

  • Mathematica
    Function[s, Prepend[Reverse@ FoldList[If[#2 > #1, #1, #2] &, Reverse@ #], 2] &@ Map[Function[k, First@ SelectFirst[s, And[Sign@ First@ # == 1, Length@ # == k] &]], Range[Max@ Map[Length, s]]]]@ SplitBy[Flatten[ Partition[Array[{#, FactorInteger[#][[-1, 1]]} &, 10^6], 2, 1] /. {{n_, a_}, {, b}} /; n > 0 :> -n Sign[Differences@ {a, b}]], Sign] (* Michael De Vlieger, May 04 2017, Version 10.2 *)

Formula

a(n) = A070089(x)+1, where x is the smallest positive integer such that A070089(x+1)-A070089(x) >= n. - Pontus von Brömssen, Nov 09 2022

Extensions

Edited by Don Reble, Jun 13 2007
a(14) from Donovan Johnson, Oct 24 2009
a(15)-a(16) from Giovanni Resta, May 04 2017

A082421 Numbers n such that P(n+1) < P(n) < P(n+2), where P(n) = largest prime factor of n (A006530).

Original entry on oeis.org

3, 5, 11, 15, 17, 29, 35, 39, 41, 44, 49, 51, 55, 59, 63, 65, 69, 71, 80, 87, 95, 99, 101, 104, 107, 111, 116, 129, 137, 143, 149, 153, 155, 161, 164, 179, 186, 191, 195, 197, 203, 209, 224, 227, 230, 237, 239, 242, 249, 255, 265, 267, 269, 272, 279, 281, 285, 291, 296, 299
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2003

Keywords

References

  • Antal Balog, On the largest prime factor of consecutive integers, Abstracts Amer. Math. Soc., 25 (No. 2, 2002), p. 337, #975-11-76.

Crossrefs

Programs

A100386 Numbers n such that for m=n to n+9, A006530(m) decreases.

Original entry on oeis.org

586951, 1473257, 4982941, 13565441, 24954141, 25384714, 26576686, 32026196, 35797623, 35953989, 37972276, 39048260, 51755761, 58769257, 60682681, 71342703, 77863117, 80826231, 84766857, 89768134, 98363506, 110482826, 115045547, 115898807, 120797465
Offset: 1

Views

Author

Labos Elemer, Dec 09 2004

Keywords

Comments

A006530(n) is the largest prime factor of n.

Examples

			586951 is here because the largest prime factors of 586951..586960 are 586951,73369,21739,9467,1319,1193,1181,1091,677,29.
		

Crossrefs

Programs

  • Mathematica
    <?(Max[Differences[#]]<0&),{1},Heads->False]//Flatten (* _Harvey P. Dale, Sep 18 2016 *)

Extensions

Edited by Don Reble, Jun 13 2007

A082419 Numbers n such that P(n+2) < P(n) < P(n+1), where P(n) = largest prime factor of n (A006530).

Original entry on oeis.org

6, 10, 22, 25, 28, 30, 33, 46, 52, 58, 68, 70, 78, 82, 88, 93, 98, 102, 106, 110, 115, 126, 130, 133, 138, 141, 145, 148, 160, 166, 172, 178, 187, 190, 198, 201, 205, 208, 213, 222, 226, 232, 236, 238, 248, 253, 262, 268, 273, 286, 292, 304, 306, 310, 316, 328, 346, 348
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2003

Keywords

References

  • Antal Balog, On the largest prime factor of consecutive integers, Abstracts Amer. Math. Soc., 25 (No. 2, 2002), p. 337, #975-11-76.

Crossrefs

Programs

  • Mathematica
    pflist=Select[Partition[Table[{n,lpf[n]},{n,400}],3,1],#[[3,-1]]< #[[1,-1]]< #[[2,-1]]&]; Table[pflist[[n,1,1]],{n,Length[pflist]}] (* Harvey P. Dale, Oct 25 2011 *)

A082420 Numbers n such that P(n) < P(n+2) < P(n+1), where P(n) = largest prime factor of n (A006530).

Original entry on oeis.org

4, 12, 16, 18, 36, 40, 42, 48, 50, 54, 60, 64, 66, 72, 75, 85, 96, 100, 108, 112, 117, 121, 128, 136, 150, 154, 156, 162, 180, 182, 184, 192, 196, 210, 217, 228, 240, 243, 245, 250, 256, 264, 266, 270, 276, 280, 282, 290, 294, 297, 301, 308, 312, 320, 325, 330, 333, 336
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2003

Keywords

References

  • Antal Balog, On the largest prime factor of consecutive integers, Abstracts Amer. Math. Soc., 25 (No. 2, 2002), p. 337, #975-11-76.

Crossrefs

Showing 1-10 of 11 results. Next