A082467 Least k>0 such that n-k and n+k are both primes.
1, 2, 1, 4, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 12, 3, 2, 9, 6, 5, 6, 3, 4, 9, 12, 1, 12, 9, 4, 3, 6, 5, 6, 9, 2, 3, 12, 1, 24, 3, 2, 15, 6, 5, 12, 3, 8, 9, 6, 7, 12, 3, 4, 15, 12, 1, 18, 9, 4, 3, 6, 5, 6, 15, 2, 3, 12, 1, 6, 15, 4, 3, 6, 5, 18, 9, 2, 15, 24, 5, 12, 3, 14, 9, 18, 7, 12, 9, 4, 15, 6, 7, 30, 9
Offset: 4
Keywords
Examples
n=10: k=3 because 10-3 and 10+3 are both prime and 3 is the smallest k such that n +/- k are both prime.
Links
- Klaus Brockhaus, Table of n, a(n) for n = 4..5000
- OEIS (Plot 2), log_10(A082467(n)/n) vs n
- J. S. Kimberley, A082467
Crossrefs
Programs
-
Magma
A082467 := func
; [A082467(n):n in [4..98]]; // Jason Kimberley, Sep 03 2011 -
Maple
A082467 := proc(n) local k; k := 1+irem(n,2); while n > k do if isprime(n-k) then if isprime(n+k) then RETURN(k) fi fi; k := k+2 od; print("Goldbach erred!") end: seq(A082467(i),i=4..90); # Peter Luschny, Sep 21 2011
-
Mathematica
f[n_] := Block[{k}, If[OddQ[n], k = 2, k = 1]; While[ !PrimeQ[n - k] || !PrimeQ[n + k], k += 2]; k]; Table[ f[n], {n, 4, 98}] (* Robert G. Wilson v, Mar 28 2005 *)
-
PARI
a(n)=if(n<0,0,k=1; while(isprime(n-k)*isprime(n+k) == 0,k++); k)
Extensions
Entries checked by Klaus Brockhaus, Apr 08 2007
Comments