cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082467 Least k>0 such that n-k and n+k are both primes.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 12, 3, 2, 9, 6, 5, 6, 3, 4, 9, 12, 1, 12, 9, 4, 3, 6, 5, 6, 9, 2, 3, 12, 1, 24, 3, 2, 15, 6, 5, 12, 3, 8, 9, 6, 7, 12, 3, 4, 15, 12, 1, 18, 9, 4, 3, 6, 5, 6, 15, 2, 3, 12, 1, 6, 15, 4, 3, 6, 5, 18, 9, 2, 15, 24, 5, 12, 3, 14, 9, 18, 7, 12, 9, 4, 15, 6, 7, 30, 9
Offset: 4

Views

Author

Benoit Cloitre, Apr 27 2003

Keywords

Comments

The existence of k>0 for all n >= 4 is equivalent to the strong Goldbach Conjecture that every even number >= 8 is the sum of two distinct primes.
n and k are coprime, because otherwise n + k would be composite. So the rational sequence r(n) = a(n)/n = k/n is injective. - Jason Kimberley, Sep 21 2011
Because there are arbitrarily many composites from m!+2 to m!+m, there are also arbitrarily large a(n) but they increase very slowly. The twin prime conjecture implies that infinitely many a(n) are 1. - Juhani Heino, Apr 09 2020

Examples

			n=10: k=3 because 10-3 and 10+3 are both prime and 3 is the smallest k such that n +/- k are both prime.
		

Crossrefs

Cf. A129301 (records), A129302 (where records occur).
Cf. A047160 (allows k=0).
Cf. A078611 (subset for prime n).

Programs

  • Magma
    A082467 := func; [A082467(n):n in [4..98]]; // Jason Kimberley, Sep 03 2011
  • Maple
    A082467 := proc(n) local k; k := 1+irem(n,2);
    while n > k do if isprime(n-k) then if isprime(n+k)
    then RETURN(k) fi fi; k := k+2 od; print("Goldbach erred!") end:
    seq(A082467(i),i=4..90); # Peter Luschny, Sep 21 2011
  • Mathematica
    f[n_] := Block[{k}, If[OddQ[n], k = 2, k = 1]; While[ !PrimeQ[n - k] || !PrimeQ[n + k], k += 2]; k]; Table[ f[n], {n, 4, 98}] (* Robert G. Wilson v, Mar 28 2005 *)
  • PARI
    a(n)=if(n<0,0,k=1; while(isprime(n-k)*isprime(n+k) == 0,k++); k)
    

Formula

A078496(n)-a(n) = A078587(n)+a(n) = n.

Extensions

Entries checked by Klaus Brockhaus, Apr 08 2007