cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082473 Numbers n such that n = phi(x)*core(x) for some x <= n, where phi(x) is the Euler totient function and core(x) the squarefree part of x.

Original entry on oeis.org

1, 2, 6, 8, 12, 20, 32, 40, 42, 48, 54, 84, 108, 110, 120, 128, 156, 160, 192, 220, 240, 252, 272, 312, 336, 342, 432, 486, 500, 504, 506, 512, 544, 640, 660, 684, 768, 812, 840, 880, 930, 936, 960, 972, 1000, 1012, 1080, 1248, 1320, 1332, 1344, 1624, 1632
Offset: 1

Views

Author

Benoit Cloitre, Apr 27 2003

Keywords

Comments

Also numbers n such that n = y*phi(y) for a unique positive integer y (see A194507). - Franz Vrabec, Aug 27 2011
Sequence A002618 sorted into ascending order; also A327171 sorted into ascending order, with duplicate terms removed. Indices of nonzero terms in A327170 and in A327172. - Antti Karttunen, Sep 29 2019

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, p. 224.

Crossrefs

Programs

  • Mathematica
    With[{nn = 1700}, TakeWhile[Union@ Array[EulerPhi[#] (Sqrt@ # /. (c_: 1) a_^(b_: 0) :> (c a^b)^2) &, nn], # <= nn &]] (* Michael De Vlieger, Sep 29 2019, after Bill Gosper at A007913 *)
  • PARI
    isok(n) = {for (x=1, n, if (eulerphi(x)*core(x) == n, return (1));); return (0);} \\ Michel Marcus, Dec 04 2013

Formula

From Antti Karttunen, Sep 29 2019: (Start)
a(n) = A002618(A194507(n)).
A327172(a(n)) = A194507(n).
(End)
The number of terms not exceeding x is ~ c * sqrt(x), where c = Product_{p prime} (1 + 1/sqrt(p*(p-1)) - 1/p) = 1.3651304521... (Janous, 1988). - Amiram Eldar, Mar 10 2021