cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A194507 a(n) = y is the unique solution to y*phi(y) = A082473(n).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 10, 7, 12, 9, 14, 18, 11, 15, 16, 13, 20, 24, 22, 30, 21, 17, 26, 28, 19, 36, 27, 25, 42, 23, 32, 34, 40, 33, 38, 48, 29, 35, 44, 31, 39, 60, 54, 50, 46, 45, 52, 66, 37, 56, 58, 51, 41, 70, 72, 43, 62, 78, 84, 64, 57, 49, 90, 47, 68, 55, 63, 80
Offset: 1

Views

Author

Franz Vrabec, Aug 27 2011

Keywords

Comments

The permutation which rearranges the terms of A002618 into ascending order. - Antti Karttunen, Sep 28 2019

Examples

			a(6) = 5 because 5*phi(5) = 20 = A082473(6).
		

Crossrefs

Cf. A002618, A082473, A327173 (inverse permutation).
Nonzero terms in A327172, in the order of appearance.

Programs

  • Mathematica
    Block[{nn = 3000, s, t}, s = Array[EulerPhi[#] (Sqrt@ # /. (c_: 1) a_^(b_: 0) :> (c a^b)^2) &, nn]; t = TakeWhile[Union@ s, # <= nn &]; Map[Block[{y = 1}, While[y EulerPhi@ y != #, y++]; y] &, t]] (* Michael De Vlieger, Sep 29 2019, after Bill Gosper at A007913 *)
  • PARI
    up_to = 105;
    A327172(n) = { fordiv(n,d,if(eulerphi(d)*d == n, return(d))); (0); };
    A194507list(up_to) = { my(v=vector(up_to),k=1); for(n=1,oo,if((v[k]=A327172(n))>0,k++); if(k>up_to, return(v))); };
    v194507 = A194507list(up_to);
    A194507(n) = v194507[n]; \\ Antti Karttunen, Sep 28 2019

Formula

From Antti Karttunen, Sep 28 2019: (Start)
a(n) = A327172(A082473(n)).
A002618(a(n)) = A082473(n).
(End)

A002618 a(n) = n*phi(n).

Original entry on oeis.org

1, 2, 6, 8, 20, 12, 42, 32, 54, 40, 110, 48, 156, 84, 120, 128, 272, 108, 342, 160, 252, 220, 506, 192, 500, 312, 486, 336, 812, 240, 930, 512, 660, 544, 840, 432, 1332, 684, 936, 640, 1640, 504, 1806, 880, 1080, 1012, 2162, 768, 2058, 1000
Offset: 1

Views

Author

Keywords

Comments

Also Euler phi function of n^2.
For n >= 3, a(n) is also the size of the automorphism group of the dihedral group of order 2n. This automorphism group is isomorphic to the group of transformations x -> ax + b, where a, b and x are integers modulo n and a is coprime to n. Its order is n*phi(n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 18 2001
Order of metacyclic group of polynomial of degree n. - Artur Jasinski, Jan 22 2008
It appears that this sequence gives the number of permutations of 1, 2, 3, ..., n that are arithmetic progressions modulo n. - John W. Layman, Aug 27 2008
The conjecture by Layman is correct. Obviously any such permutation must have an increment that is prime to n, and almost as obvious that any such increment will work, with any starting value; hence phi(n) * n total. - Franklin T. Adams-Watters, Jun 09 2009
Consider the numbers from 1 to n^2 written line by line as an n X n square: a(n) = number of numbers that are coprime to all their horizontal and vertical immediate neighbors. - Reinhard Zumkeller, Apr 12 2011
n -> a(n) is injective: a(m) = a(n) implies m = n. - Franz Vrabec, Dec 12 2012 (See Mathematics Stack Exchange link for a proof.)
a(p) = p*(p-1) a pronic number, see A036689 and A002378. - Fred Daniel Kline, Mar 30 2015
Conjecture: All the rational numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts. - Zhi-Wei Sun, Sep 24 2015
From Jianing Song, Aug 25 2023: (Start)
a(n) is the order of the holomorph (see the Wikipedia link) of the cyclic group of order n. Note that Hol(C_n) and Aut(D_{2n}) are isomorphic unless n = 2, where D_{2n} is the dihedral group of order 2*n. See the Wordpress link.
The odd-indexed terms form a subsequence of A341298: the holomorph of an abelian group of odd order is a complete group. See Theorem 3.2, Page 618 of the W. Peremans link. (End)

Examples

			a(4) = 8 since phi(4) = 2 and 4 * 2 = 8.
a(5) = 20 since phi(5) = 4 and 5 * 4 = 20.
		

References

  • Peter Giblin, Primes and Programming: An Introduction to Number Theory with Computing. Cambridge: Cambridge University Press (1993) p. 116, Exercise 1.10.
  • J. L. Lagrange, Oeuvres, Vol. III Paris 1869.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First column of A047916.
Cf. A002619, A011755 (partial sums), A047918, A000010, A053650, A053191, A053192, A036689, A058161, A009262, A082473 (same terms, sorted into ascending order), A256545, A327172 (a left inverse), A327173, A065484.
Subsequence of A323333.

Programs

Formula

Multiplicative with a(p^e) = (p-1)*p^(2e-1). - David W. Wilson, Aug 01 2001
Dirichlet g.f.: zeta(s-2)/zeta(s-1). - R. J. Mathar, Feb 09 2011
a(n) = A173557(n) * A102631(n). - R. J. Mathar, Mar 30 2011
From Wolfdieter Lang, May 12 2011: (Start)
a(n)/2 = A023896(n), n >= 2.
a(n)/2 = (1/n) * Sum_{k=1..n-1, gcd(k,n)=1} k, n >= 2 (see A023896 and A076512/A109395). (End)
a(n) = lcm(phi(n^2),n). - Enrique Pérez Herrero, May 11 2012
a(n) = phi(n^2). - Wesley Ivan Hurt, Jun 16 2013
a(n) = A009195(n) * A009262(n). - Michel Marcus, Oct 24 2013
G.f.: -x + 2*Sum_{k>=1} mu(k)*k*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, Jan 03 2017
a(n) = A082473(A327173(n)), A327172(a(n)) = n. -- Antti Karttunen, Sep 29 2019
Sum_{n>=1} 1/a(n) = 2.203856... (A065484). - Amiram Eldar, Sep 30 2019
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ c*sqrt(x) for c = Product_{p prime} (1 + 1/(p*(p - 1 + sqrt(p^2 - p)))) = 1.3651304521525857... - Charles R Greathouse IV, Mar 16 2022
a(n) = Sum_{d divides n} A001157(d)*A046692(n/d); that is, the Dirichlet convolution of sigma_2(n) and the Dirichlet inverse of sigma_1(n). - Peter Bala, Jan 26 2024

Extensions

Better description from Labos Elemer, Feb 18 2000

A327172 If there is a divisor d of n such that phi(d)*d = n, then a(n) = d, otherwise a(n) = 0.

Original entry on oeis.org

1, 2, 0, 0, 0, 3, 0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 10, 0, 7, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15
Offset: 1

Views

Author

Antti Karttunen, Sep 28 2019

Keywords

Comments

If such a divisor exists, it is necessarily unique. See Franz Vrabec's Dec 12 2012 comment in A002618.
Each natural number n > 0 occurs exactly once in this sequence, at position A002618(n).

Crossrefs

Left inverse of A002618.
Cf. A000010.
Cf. A082473 (the indices of nonzero terms), A194507 (nonzero terms in the order of appearance).

Programs

  • Mathematica
    With[{s = EulerPhi /@ Range@ 120}, Table[DivisorSum[n, # &, # s[[#]] == n &], {n, Length@ s}]] (* Michael De Vlieger, Sep 29 2019 *)
  • PARI
    A327172(n) = { fordiv(n,d,if(eulerphi(d)*d == n, return(d))); (0); };

Formula

a(A002618(n)) = n.
a(A082473(n)) = A194507(n).

A327170 Number of divisors d of n such that A327171(d) (= phi(d)*core(d)) is equal to n.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 28 2019

Keywords

Comments

From any solution (*) to A327171(d) = d*phi(d) = n, we obtain a solution for core(d')*phi(d') = n by forming a "pumped up" version d' of d, by replacing each exponent e_i in the prime factorization of d = p_1^e_1 * p_2^e_2 * ... * p_k^e_k, with exponent 2*e_i - 1 so that d' = p_1^(2*e_1 - 1) * p_2^(2*e_2 - 1)* ... * p_k^(2*e_k - 1) = A102631(d) = d*A003557(d), and this d' is also a divisor of n, as n = d' * A173557(d). Generally, any product m = p_1^(2*e_1 - x) * p_2^(2*e_2 - y)* ... * p_k^(2*e_k - z), where each x, y, ..., z is either 0 or 1 gives a solution for core(m)*phi(m) = n, thus every nonzero term in this sequence is a power of 2, even though not all such m's might be divisors of n.
(* by necessity unique, see Franz Vrabec's Dec 12 2012 comment in A002618).
On the other hand, if we have any solution d for core(d)*phi(d) = n, we can find the unique such divisor e of d that e*phi(e) = n by setting e = A019554(d).
Thus, it follows that the nonzero terms in this sequence occur exactly at positions given by A082473.
Records (1, 2, 4, 8, 16, ...) occur at n = 1, 12, 504, 223200, 50097600, ...

Examples

			For n = 504 = 2^3 * 3^2 * 7, it has 24 divisors, out of which four divisors: 42 (= 2^1 * 3^1 * 7^1), 84 (= 2^2 * 3^1 * 7^1), 126 (= 2^1 * 3^2 * 7^1), 252 (= 2^2 * 3^2 * 7^1) are such that A007913(d)*A000010(d) = 504, thus a(504) = 4.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[EulerPhi[#] (Sqrt@ # /. (c_: 1) a_^(b_: 0) :> (c a^b)^2) &, 120]}, Table[DivisorSum[n, 1 &, s[[#]] == n &], {n, Length@ s}]] (* Michael De Vlieger, Sep 29 2019, after Bill Gosper at A007913 *)
  • PARI
    A327170(n) = sumdiv(n,d,eulerphi(d)*core(d) == n);

Formula

a(n) = Sum_{d|n} [A000010(d)*A007913(d) == n], where [ ] is the Iverson bracket.

A327171 a(n) = phi(n) * core(n), where phi is Euler totient function, and core gives the squarefree part of n.

Original entry on oeis.org

1, 2, 6, 2, 20, 12, 42, 8, 6, 40, 110, 12, 156, 84, 120, 8, 272, 12, 342, 40, 252, 220, 506, 48, 20, 312, 54, 84, 812, 240, 930, 32, 660, 544, 840, 12, 1332, 684, 936, 160, 1640, 504, 1806, 220, 120, 1012, 2162, 48, 42, 40, 1632, 312, 2756, 108, 2200, 336, 2052, 1624, 3422, 240, 3660, 1860, 252, 32, 3120, 1320
Offset: 1

Views

Author

Antti Karttunen, Sep 28 2019

Keywords

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 161.

Crossrefs

Cf. A082473 (gives the terms in ascending order, with duplicates removed).
Cf. also A002618, A062355.

Programs

  • Magma
    [EulerPhi(n)*Squarefree(n): n in [1..100]]; // G. C. Greubel, Jul 13 2024
    
  • Mathematica
    Array[EulerPhi[#] (Sqrt@ # /. (c_: 1) a_^(b_: 0) :> (c a^b)^2) &, 66] (* Michael De Vlieger, Sep 29 2019, after Bill Gosper at A007913 *)
  • PARI
    A327171(n) = eulerphi(n)*core(n);
    
  • PARI
    A327171(n) = { my(f=factor(n)); prod (i=1, #f~, (f[i, 1]-1)*(f[i, 1]^(-1 + f[i, 2] + (f[i, 2]%2)))); };
    
  • Python
    from sympy.ntheory.factor_ import totient, core
    def A327171(n):
        return totient(n)*core(n) # Chai Wah Wu, Sep 29 2019
    
  • SageMath
    [euler_phi(n)*squarefree_part(n) for n in range(1,101)] # G. C. Greubel, Jul 13 2024

Formula

a(n) = A000010(n) * A007913(n).
Multiplicative with a(p^k) = (p-1) * p^((k-1)+(k mod 2)).
Sum_{n>=1} 1/a(n) = (Pi^2/6) * Product_{p prime} (1 + (p+1)/(p^2*(p-1))) = 3.96555686901754604330... - Amiram Eldar, Oct 16 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/45) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.1500809164... . - Amiram Eldar, Dec 05 2022
a(n) = A000010(A053143(n)). - Amiram Eldar, Sep 15 2023

A327173 Inverse permutation to A194507.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 9, 7, 11, 8, 14, 10, 17, 12, 15, 16, 23, 13, 26, 18, 22, 20, 31, 19, 29, 24, 28, 25, 38, 21, 41, 32, 35, 33, 39, 27, 50, 36, 42, 34, 54, 30, 57, 40, 47, 46, 65, 37, 63, 45, 53, 48, 72, 44, 67, 51, 62, 52, 79, 43, 82, 58, 68, 61, 76, 49, 92, 66, 74, 55, 96, 56, 99, 70, 73, 71, 94, 59, 108, 69, 90, 78
Offset: 1

Views

Author

Antti Karttunen, Sep 28 2019

Keywords

Crossrefs

Cf. A000010, A002618, A082473, A194507 (inverse permutation).

Formula

A082473(a(n)) = A002618(n).
Showing 1-6 of 6 results.