A082542 a(n) = prime(n) + 2 - (prime(n) mod 4).
2, 2, 6, 6, 10, 14, 18, 18, 22, 30, 30, 38, 42, 42, 46, 54, 58, 62, 66, 70, 74, 78, 82, 90, 98, 102, 102, 106, 110, 114, 126, 130, 138, 138, 150, 150, 158, 162, 166, 174, 178, 182, 190, 194, 198, 198, 210, 222, 226, 230, 234, 238, 242, 250, 258, 262, 270, 270, 278
Offset: 1
Examples
a(2) = 2 because the second prime is 3, and 3 + 2 - 3 = 2. a(3) = 6 because the third prime is 5, and 5 + 2 - 1 = 6. a(4) = 6 because the fourth prime is 7, and 7 + 2 - 3 = 6.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[2 + NthPrime(n) - (NthPrime(n) mod 4): n in [1..60]]; // G. C. Greubel, Nov 14 2018
-
Mathematica
Table[Prime[n] + 2 - Mod[Prime[n], 4], {n, 60}] (* Alonso del Arte, Feb 23 2015 *) #+2-Mod[#,4]&/@Prime[Range[60]] (* Harvey P. Dale, Aug 24 2025 *)
-
PARI
vector(60, n, 2 + prime(n) - lift(Mod(prime(n),4))) \\ G. C. Greubel, Nov 14 2018
Formula
a(n+1) = p + (-1/p) = p + (-1)^((p-1)/2), where p is the n-th odd prime and (-1/p) denotes the value of Legendre symbol. - Lekraj Beedassy, Mar 17 2005
From Amiram Eldar, Dec 24 2022: (Start)
Product_{n>=1} a(n)/prime(n) = 2/Pi (A060294). (End)
Comments